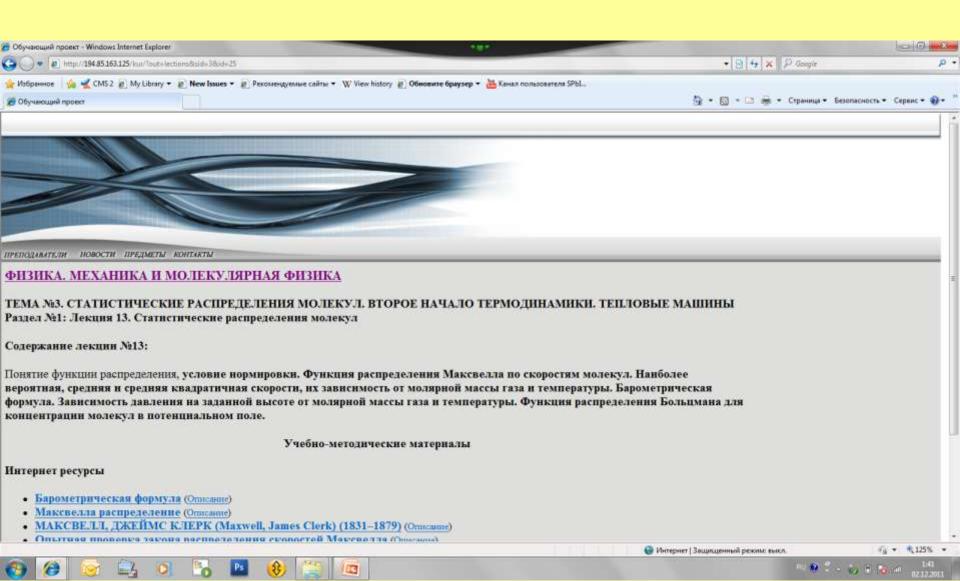


ЛЕКЦИЯ 4 (12)

Самостоятельно

ВНУТРЕННЯЯ ЭНЕРГИЯ ИДЕАЛЬНОГО ГАЗА

http://194.85.163.125/kur



2 декабря 2011 года

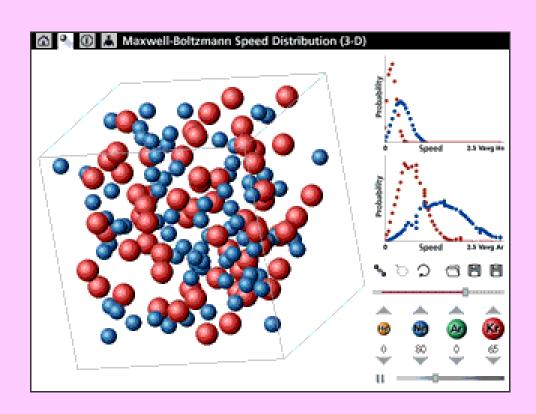
ЛЕКЦИЯ 5 (13)

СТАТИСТИЧЕСКИЕ РАСПРЕДЕЛЕНИЯ МОЛЕКУЛ

Содержание Лекции 13:

- Понятие функции распределения, условие нормировки. Функция распределения Максвелла по скоростям молекул.
- Наиболее вероятная, средняя и средняя квадратичная скорости, их зависимость от молярной массы газа и температуры.
- Барометрическая формула. Зависимость давления на заданной высоте от молярной массы газа и температуры.
- Функция распределения Больцмана для концентрации молекул в потенциальном поле.

13.1. Тункция распределения Максвелла по скоростям молекул



При выводе основного уравнения МКТ мы задавали разные скорости, более того, в результате многократных столкновений скорость каждой молекулы изменяется по модулю и направлению.

Однако из-за хаотичности движения молекул все направления являются равновероятными, т.е. в любом направлении в среднем движется одинаковое число молекул.

Ранее мы ввели понятие средней квадратичной скорости:

$$\left\langle v_{\mathrm{KB}} \right\rangle = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v_i^2}$$
 (13.1)

Согласно МКТ как бы не изменялись скорости молекул массой m_0 в газе при столкновениях, $< v_{\rm kb} >$ остается постоянной при T= const.

Термодинамическое равновесие (ТДР) – система находится в состоянии ТДР, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой системы не изменяются).

В газе находящемся в состоянии ТДР, устанавливается некоторое **стационарное неменяющееся со временем распределение молекул по скоростям**, подчиняющееся статистическому закону — **закону Максвелла.**

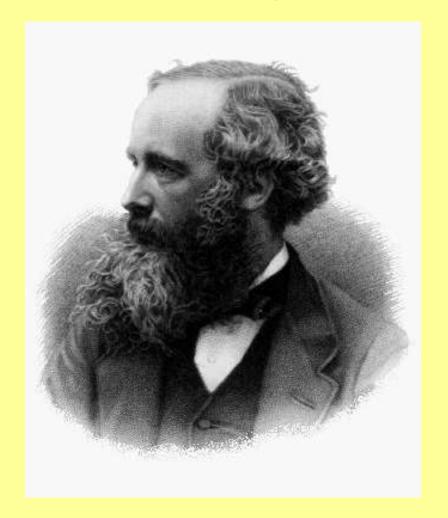
Закон Максвелла описывает функцию распределения молекул газа по скоростям f(v):

функция распределения определяет относительное число молекул газа $\mathrm{d}N(v)/N$, скорости которых лежат в интервале скоростей от v до $v+\mathrm{d}v$.

Максвелл, Джеймс Клерк

(Maxwell James Clerk; 1831 - 1879)

Выдающийся британский физик и математик. Создатель классической электродинамики (уравнения Максвелла), один из основателей статистической физики.



Итак, распределение Максвелла:

$$\frac{\mathrm{d}N(v)}{N} = f(v)\mathrm{d}v , \qquad (13.2)$$

откуда

$$f(v) = \frac{\mathrm{d}N(v)}{N\mathrm{d}v} \quad . \tag{13.3}$$

Выражение $f(v) \mathrm{d}v$ – <u>вероятность</u> того, что скорости молекул заключены в интервале от v до $v + \mathrm{d}v$.

Применяя методы теории вероятности, Максвелл нашел вид функции f(v) для распределения молекул ИГ по скоростям (1860 год):

$$f(v) = 4\pi \cdot \left(\frac{m_0}{2\pi \cdot kT}\right)^{\frac{3}{2}} v^2 e^{-\frac{m_0 v^2}{2kT}}.$$

(13.4)

Итак,

$$f(v) = 4\pi \cdot \left(\frac{m_0}{2\pi \cdot kT}\right)^{\frac{3}{2}} v^2 e^{-\frac{m_0 v^2}{2kT}}.$$

Обозначим

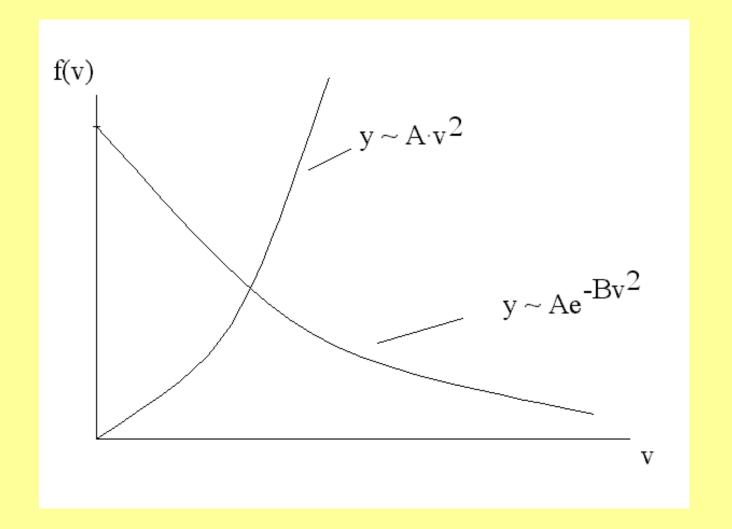
$$B = \frac{m_0}{2kT}.$$

Тогда

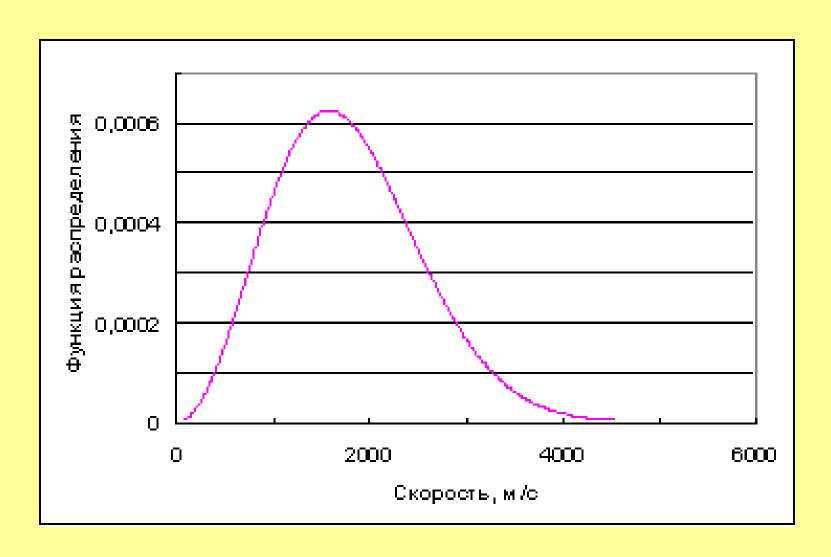
$$f(v) = Av^2 e^{-Bv^2}.$$

Рассмотрим основные свойства полученного выражения:

1).
$$f(v) = A \cdot v^2 \cdot \exp(-B \cdot v^2)$$
 при $T = \text{const}$



Расчет выполнен для молекул водорода ($\mu = 0.002$ кг/моль) при T = 300 K.



2). Условие нормировки для функции f(v)

По своему смыслу функция f(v) – плотность вероятности. Следовательно,

$$\int_{0}^{\infty} f(v)dv = 1 \tag{13.5}$$

т.е. вероятность того что любая молекула имеет какуюнибудь скорость $v \to P = 1$.

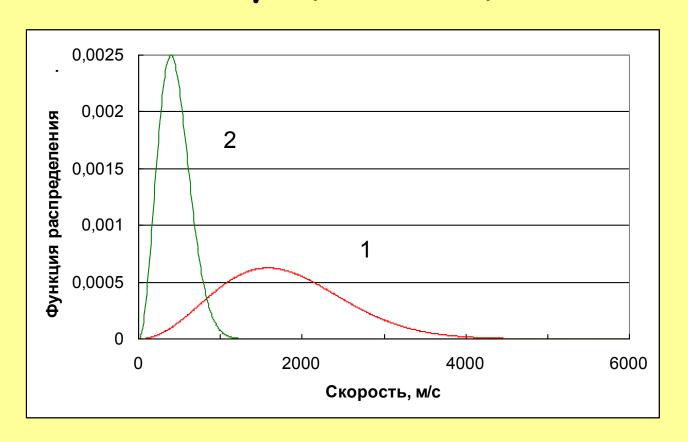
Другими словами, площадь под кривой равна единице.

$$f(v) = Av^2 \exp\left(-\frac{m_0 v^2}{2kT}\right).$$

Коэффициент A находят из условия нормировки для функции f(v), а именно интегрируя выражение:

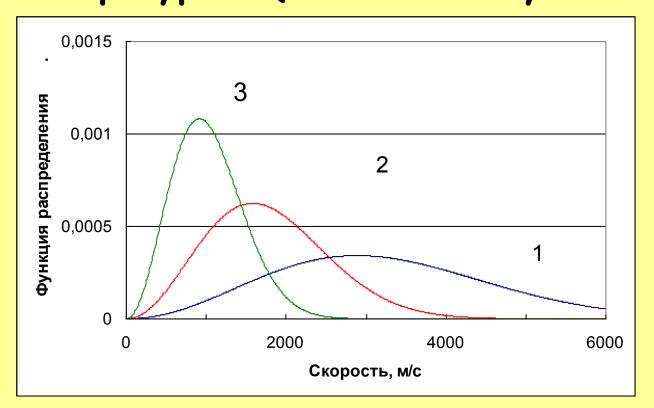
$$\int_{0}^{\infty} f(v) dv = A \int_{0}^{\infty} v^{2} \exp\left(-\frac{m_{0}v^{2}}{2kT}\right) \cdot dv = 1 \implies A = 4\pi \left(\frac{m_{0}}{2\pi kT}\right)^{3/2}, \tag{13.6}$$

3). Зависимость функции распределения f(v) от массы молекул ($T = \mathrm{const}$):



1 - водород; 2 - кислород ($T=300~{
m K}$) $m_2{>}m_1$

4). Зависимость распределения f(v) от температуры T (масса молекул = const):



Расчет выполнен для молекул H_2 для различных T :

1 -
$$T_1$$
 = 1000 K; 2 - T_2 = 300 K; 3 - T_3 = 100 K.
$$T_1 > T_2 > T_3$$

5). Относительное число молекул, имеющих скорость в интервале от v_1 до v_2 :

$$\frac{\Delta N_{12}}{N} = \int_{v_1}^{v_2} f(v) dv.$$
 (13.7)

$v/v_{\rm B}$	$\Delta N/N$, %	$v/v_{ m B}$	$\Delta N/N$, %
00.5	8.1	2.03.0	4.6
0.51.5	70.7	>3	0.04
1.52.0	16.6	>5	8.10-9

6). Относительное число молекул, скорость которых превышает некоторое значение v_0 , определяется выражением

$$\frac{\Delta N}{N} = \int_{v_0}^{\infty} f(v) dv \tag{13.8}$$

7). Распределение молекул по энергиям теплового движения определяется долей $\mathrm{d}N(E)/N$ из общего числа молекул N, которые имеют кинетические энергии $E=mv^2/2$, заключенные в интервале от E до $E+\mathrm{d}E$:

$$dN(E) = Nf(E)dE =$$

$$= \frac{2N}{\sqrt{\pi}} (kT)^{-\frac{3}{2}} E^{\frac{1}{2}} e^{-\frac{E}{kT}} dE \qquad (13.9)$$

При выводе формулы (13.9) использовалось следующее:

$$f(v) = 4\pi \cdot \left(\frac{m_0}{2\pi \cdot kT}\right)^{\frac{3}{2}} v^2 e^{-\frac{m_0 v^2}{2kT}}$$

a

$$dN_v = Nf(v)dv.$$

В свою очередь, скорость

$$v = (2E/m)^{1/2}$$
, $dv = (2mE)^{-1/2}dE$,

получаем

$$dN(E) = \frac{2N}{\sqrt{\pi}} (kT)^{-\frac{3}{2}} E^{\frac{1}{2}} e^{-\frac{E}{kT}} dE$$

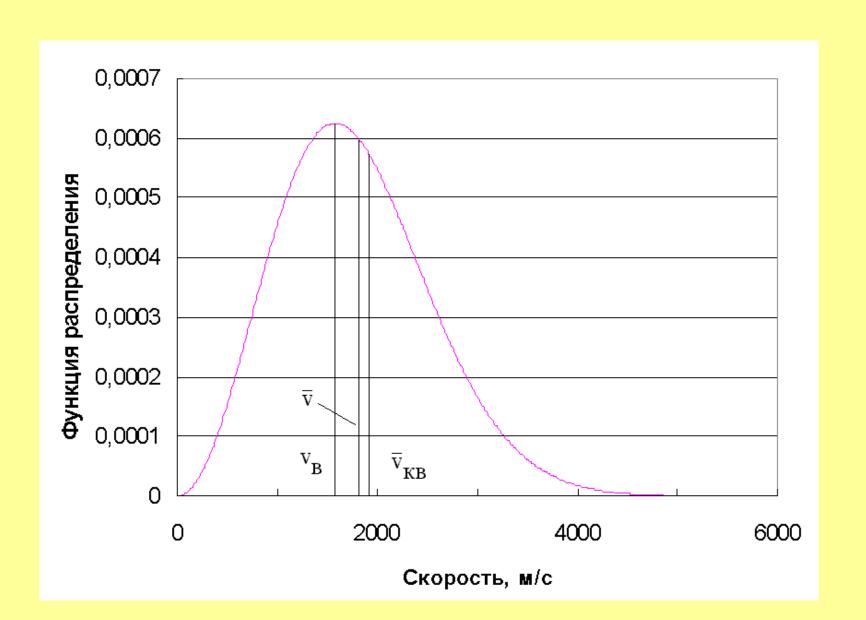
Домашнее задание.

Самостоятельно доказать, что

$$\langle E \rangle = \int_{0}^{\infty} E \cdot f(E) dE = \dots = \frac{3}{2} \cdot kT.$$
 (13.10)

14.2. Характерные скорости молекул

Введем понятие характерных скоростей.



а) Средняя квадратичная скорость $<\!v_{_{\rm KB}}\!>$

$$= \sqrt{\frac{3kT}{m_{\rm o}}} = \sqrt{\frac{3RT}{\mu}}$$
 . (13.11)

В случае водорода (μ = 0.002 кг/моль; T = 300 K):

$$< v_{KB} > = 1930 \text{ m/c}$$
 .

b) Наиболее вероятная скорость $v_{\scriptscriptstyle \rm B}$:

$$v_{\rm B} = \sqrt{\frac{2kT}{m_{\rm o}}} = \sqrt{\frac{2RT}{\mu}}$$
 . (13.12)

В случае водорода (μ = 0.002 кг/моль; T = 300 К): $v_{\rm B}$ = 1580 м/с .

Вывод формулы (13.12)

$$f(v) = max \Leftrightarrow при v = v_{eep}$$

$$\frac{\mathbf{d}f(\boldsymbol{v})}{\mathbf{d}\boldsymbol{v}} = 0; \text{ запишем } f(\boldsymbol{v}) = A\boldsymbol{v}^2 \exp(-B\boldsymbol{v}^2),$$

где
$$m{A} = 4\pi \left(rac{m{m}_{
m o}}{2\pi m{k}m{T}}
ight)^{3/2}, \ m{B} = rac{m{m}_{
m o}}{2m{k}m{T}}$$
 .

Тогда

$$\frac{\mathbf{d}f(\boldsymbol{v})}{\mathbf{d}\boldsymbol{v}} = \boldsymbol{A} \cdot (2\boldsymbol{v} \cdot \exp(-\boldsymbol{B}\boldsymbol{v}^2) + \boldsymbol{v}^2 \exp(-\boldsymbol{B}\boldsymbol{v}^2) \cdot (-\boldsymbol{B} \cdot 2\boldsymbol{v})) = 0,$$

$$\frac{\mathbf{d}f(\boldsymbol{v})}{\mathbf{d}\boldsymbol{v}} = \boldsymbol{A} \cdot 2\boldsymbol{v} \cdot \exp(-\boldsymbol{B}\boldsymbol{v}^2) \cdot (1 - \boldsymbol{B}\boldsymbol{v}^2) = 0, \quad (1 - \boldsymbol{B}\boldsymbol{v}^2) = 0$$

$$\Rightarrow v_{eep} = \sqrt{\frac{1}{B}} = \sqrt{\frac{2kT}{m_o}}$$
.

с) Средняя арифметическая < v>:

$$v_{\rm B} = \sqrt{\frac{8kT}{\pi m_{\rm o}}} = \sqrt{\frac{8RT}{\pi \mu}} \approx \sqrt{2,55 \cdot \frac{\rm RT}{\mu}}.$$

(13.13)

В случае водорода (μ = 0.002 кг/моль; T = 300 К): $v_{\rm B}$ = 1780 м/с .

Вывод формулы (13.13)

Самостоятельно рассчитать, используя то условие, что средняя арифметическая скорость определяется по формуле:

$$\langle \boldsymbol{v} \rangle = \int_{0}^{\infty} \boldsymbol{v} f(\boldsymbol{v}) d\boldsymbol{v} = \dots = \sqrt{\frac{8kT}{\pi m_{o}}}.$$

Задача. Температура окиси азота NO T=300 K. Определить долю молекул, скорость которых лежит в интервале от v_1 = 820 м/с до v_2 = 830 м/с.

Задача. Температура окиси азота NO T=300 K. Определить долю молекул, скорость которых лежит в интервале от v_1 = 820 м/с до v_2 = 830 м/с.

• Otbet: $\Delta N/N = 4.10^{-3}$, t.e. 4%

14.3. Барометрическая формула

Барометрическая формула

Определяет зависимость атмосферного давления p от высоты h .

Исходные положения при выводе формулы:

- поле тяготения однородно;
- ускорение свободного падения постоянно (g=const);
- температура атмосферы постоянна (T=const);
- масса всех молекул одинакова.

Барометрическая формула

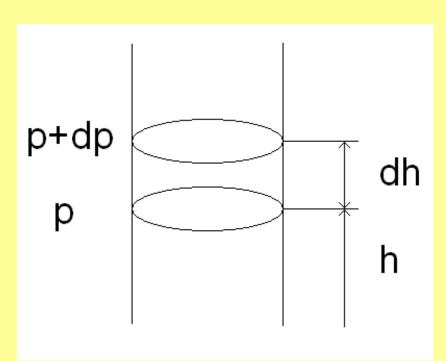
Атмосферное давление на какой-либо высоте h обусловлено весом вышележащих слоев газа.

Давление на высоте $h+\mathrm{d}h$ будет $p+\mathrm{d}p$, а их разность

$$p$$
- $(p+dp) = \rho g dh$,

где ρ – плотность газа на высоте h. Отсюда:

$$dp = - \rho g dh$$
.



 $\mathrm{d}h{>}0,~\mathrm{d}p{<}0$ Давление с высотой убывает

Барометрическая формула

Величина $\rho g \mathrm{d} h$ – вес газа, заключенного в объеме цилиндра высотой $\mathrm{d} h$, площадь основания которого равна единице площади, где ρ – плотность газа на высоте h.

Отсюда

$$dp = - \rho g dh$$
.

(13.14)

Барометрическая формула

Плотность воздуха можно вычислить из уравнения Клапейрона-Менделеева:

$$pV = \frac{m}{\mu}RT \implies \rho = \frac{m}{V} = \frac{p\mu}{RT}$$
.

Тогда
$$\mathrm{d}p = -\frac{p\mu}{RT}g\mathrm{d}h \ \Rightarrow \ \frac{\mathrm{d}p}{p} = -\frac{\mu g}{RT}\mathrm{d}h$$
.

$$\int \frac{\mathrm{d}p}{p} = -\int \frac{\mu g}{RT} \,\mathrm{d}h \quad \Rightarrow \quad \ln p = -\frac{\mu g}{RT} h + \ln C \ .$$

Окончательно,
$$p = p_0 \exp\left(-\frac{\mu gh}{RT}\right)$$
 .

Барометрическая формула

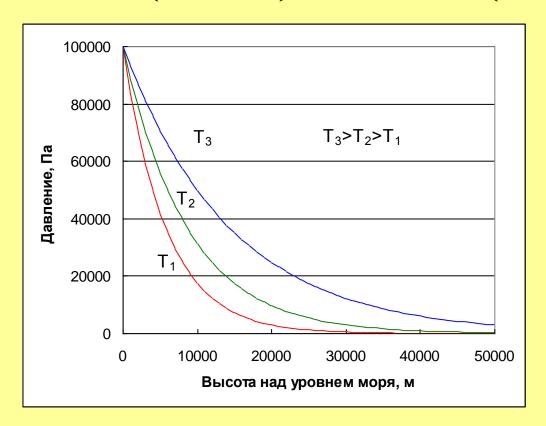
$$p = p_0 \exp\left(-\frac{\mu gh}{RT}\right) \qquad . \tag{13.15}$$

Отметим:

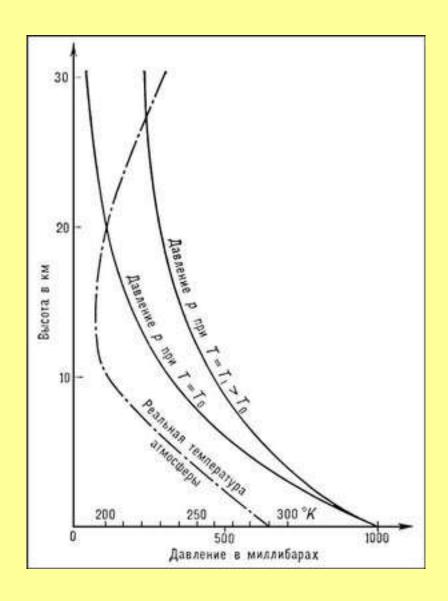
Высота h обычно обозначаются относительно уровня моря, где давление считается нормальным $p_{\rm 0}$.

Давление газа p убывает с высотой тем быстрее, чем тяжелее газ (чем больше μ) и чем ниже температура T.

$$p = p_0 \exp\left(-\frac{\mu gh}{RT}\right) = p_0 \exp\left(-\frac{m_0 gh}{kT}\right)$$



Параметры расчета: μ = 0,029 кг/моль; g = 9,8 м/с²; R=8,31 Дж/(моль·К); T_1 = 200 К ; T_2 = 300 К ; T_3 = 500 К .



14.4. Тункция распределения Больцмана для концентрации молекул в потенциальном поле

Людвиг Больцман (L.Boltzmann) (1844-1906)

- Австрийский физиктеоретик, один из основоположников классической статистической физики
- Основные работы в области кинетической теории газов, термодинамики и теории излучения.

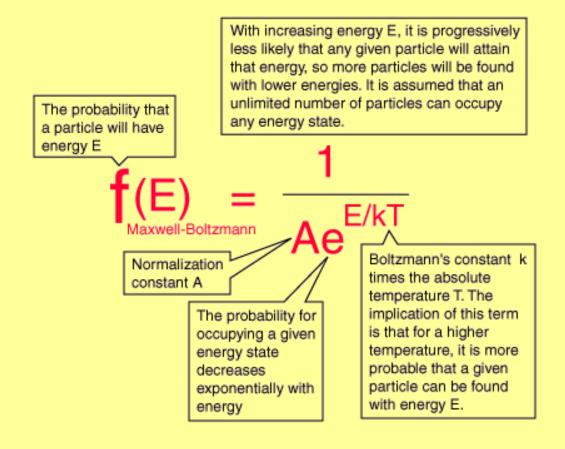
Распределение Больцмана

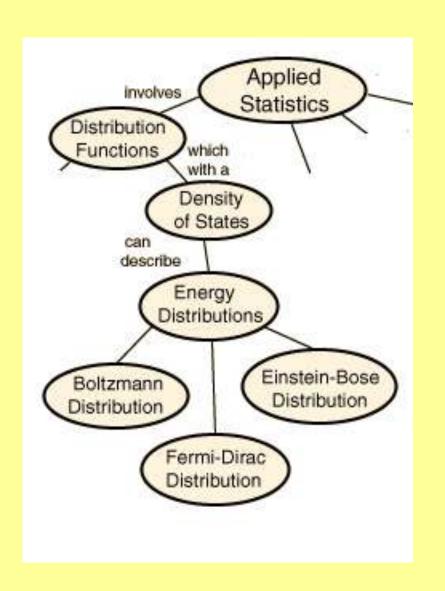
Распределение справедливо для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения и находящихся в любом потенциальном поле сил (например, в потенциальном поле сил земного тяготения).

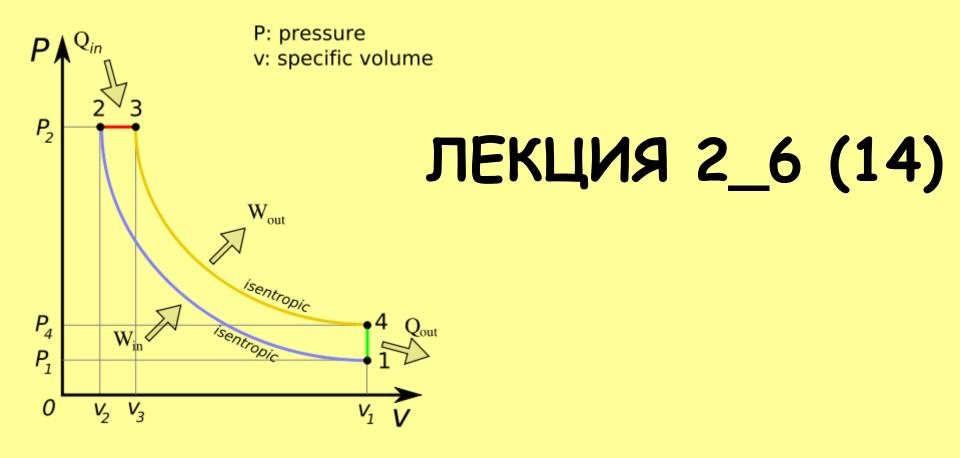
Распределение Больцмана

$$n = n_0 \exp\left(-\frac{E_{\rm P}}{kT}\right) \qquad , (13.16)$$

где n - плотность молекул в том месте пространства, где потенциальная энергия молекулы имеет значение E_{P} , n_{0} - плотность молекул в том месте, где потенциальная энергия молекулы равна нулю.







Второе начало термодинамики. Тепловые машины