LISTING 28.2 L28-2.ASM

5
5
>
>
>
>
.
>
S

!Previous”Table of ContentsHNext|

Program to illustrate use of read mode 1 (color compare mode)
to detect collisions in display memory. Draws a yellow line on a

db

stack ends

J
VGA_SEGMENT
SCREEN_WIDTH

GC_INDEX
SET_RESET
ENABLE_SET_RESET
COLOR_COMPARE
GRAPHICS_MODE
BIT_MASK

3
code

Start

)

)

e Lo Ve Ve Lo

tack segment

; By Michael Abrash

EQU

EQU
EQU
EQU
EQU
EQU
EQU

segment
assume
proc

cld

0ao
EQU
3ce
0

couT N B

Select graphics mode 16h.

mov
int

ax,16h
10h

Fill the screen with blue.

mov
call
mov
move
sub
mov
rep

al,1

; blue background, then draws a perpendicular green line until the
; yellow line is reached.

word stack “STACK'
512 dup (?)

00h
80 ;in bytes

h ;Graphics Controller Index register
;Set/Reset register index in GC
;Enable Set/Reset register index in GC
;Color Compare register index in GC
;Graphics Mode register index in GC
;Bit Mask register index in GC

word "~ CODE'

cs:code

near

;blue is color 1

SelectSetResetColor ;set to draw in blue
ax,VGA_SEGMENT

s, ax
di,di
cx,700
stosb

oh

;the value written actually doesn't

matter, since set/reset is providing
the data written to display memory

Draw a vertical yellow line.

mov
call
mov
mov
out
inc
mov
out
mov
mov

VLineloop:

mov
stosb

al,14

;yellow is color 14

SelectSetResetColor ;set to draw in yellow

dx, GC_INDEX
al,BIT_MASK

dx,al
dx
al,106h
dx,al
di, 40
cX, 350

al,es:[di]

;point GC Index to Bit Mask
;point to GC Data

;set Bit Mask to 1eh
;start in the middle of the top line
;do full height of screen

;load the latches
;write next pixel of yellow line (set/reset

http://www.phatcode.net/res/224/files/html/ch28/28-05.html
http://www.phatcode.net/res/224/files/html/ch28/28-03.html
http://www.phatcode.net/res/224/files/html/index.html

; provides the data written to display
; memory, and AL is actually ignored)
add di,SCREEN_WIDTH-1 ;point to the next scan line
loopVLineloop
5
; Select write mode © and read mode 1.
5
mov dx, GC_INDEX
mov al,GRAPHICS MODE

out dx,al ;point GC Index to Graphics Mode register
inc dx ;point to GC Data
mov al, 00001000b ;bit 3=1 is read mode 1, bits 1 & 0=00
; is write mode ©
out dx,al ;set Graphics Mode to read mode 1,

; write mode ©

5
; Draw a horizontal green line, one pixel at a time, from left
; to right until color compare reports a yellow pixel is encountered.
5
; Draw in green.
5
mov al,2 ;green is color 2
call SelectSetResetColor j;set to draw in green

; Set color compare to look for yellow.

mov dx, GC_INDEX
mov al,COLOR_COMPARE

out dx,al ;point GC Index to Color Compare register
inc dx ;point to GC Data

mov al,14 ;we're looking for yellow, color 14

out dx,al ;set color compare to look for yellow

dec dx ;point to GC Index

; Set up for quick access to Bit Mask register.

mov al,BIT_MASK
out dx,al ;point GC Index to Bit Mask register
inc dx ;point to GC Data

; Set initial pixel mask and display memory offset.
mov al,8eh ;initial pixel mask

mov di,100*SCREEN_WIDTH
;start at left edge of scan line 100

HLineLoop:

mov ah,es:[di] ;do a read mode 1 (color compare) read.
; This also loads the latches.

and ah,al ;is the pixel of current interest yellow?

jnz WaitKeyAndDone ;yes-we've reached the yellow line, so we're
; done

out dx,al ;set the Bit Mask register so that we
; modify only the pixel of interest

mov es:[di],al ;draw the pixel. The value written is
; irrelevant, since set/reset is providing
; the data written to display memory

ror al,1 ;shift pixel mask to the next pixel

adc di,o ;advance the display memory offset if

; the pixel mask wrapped
; Slow things down a bit for visibility (adjust as needed).
5
mov CcX,0
DelayLoop:
loop DelaylLoop

jmp HLinelLoop
5
; Wait for a key to be pressed to end, then return to text mode and
; return to DOS.

b
WaitKeyAndDone:
WaitKeylLoop:
mov ah,1
int 16h
jz WaitKeyLoop
sub ah, ah
int 16h ;clear the key
mov ax,3
int 10h ;return to text mode
mov ah,4ch
int 21h ;done

Startendp
5
; Enables set/reset for all planes, and sets the set/reset color
; to AL.
5
SelectSetResetColorprocnear
mov dx,GC_INDEX

push ax ;preserve color
mov al,SET_RESET
out dx,al ;point GC Index to Set/Reset register
inc dx ;point to GC Data
pop ax ;get back color
out dx,al ;set Set/Reset register to selected color
dec dx ;point to GC Index
mov al,ENABLE_SET RESET
out dx,al ;point GC Index to Enable Set/Reset register
inc dx ;point to GC Data
mov al,ofh
out dx,al ;enable set/reset for all planes
ret
SelectSetResetColorendp
code ends
end Start

When all Planes “Don’t Care”

Still and all, there aren’t all that many uses for basic color compare operations. There is, however, a
genuinely odd application of read mode 1 that’s worth knowing about; but in order to understand that,
we must first look at the “don’t care” aspect of color compare operation.

As described earlier, during read mode 1 reads the color stored in the Color Compare register is
compared to each of the 8 pixels at a given address in VGA memory. But—and it’s a big but—any
plane for which the corresponding bit in the Color Don’t Care register is a 0 is always considered a
color compare match, regardless of the values of that plane’s bits in the pixels and in the Color
Compare register.

Let’s look at this another way. A given pixel is controlled by four bits, one in each plane. Normally
(when the Color Don’t Care register is OFH), the color in the Color Compare register is compared to
the four bits of each pixel; bit 0 of the Color Compare register is compared to the plane 0 bit of each
pixel, bit 1 of the Color Compare register is compared to the plane 1 bit of each pixel, and so on. That
is, when the lower four bits of the Color Don’t Care register are all set to 1, then all four bits of a
given pixel must match the Color Compare register in order for a read mode 1 read to return a 1 for
that pixel to the CPU.

However, if any bit of the Color Don’t Care register is 0, then the corresponding bit of each pixel is
unconditionally considered to match the corresponding bit of the Color Compare register. You might
think of the Color Don’t Care register as selecting exactly which planes should matter in a given read
mode 1 read. At the extreme, if all bits of the Color Don’t Care register are 0, then read mode 1 reads
will always return OFFH, since all planes are considered to match all bits of all pixels.

Now, we’re all prone to using tools the “right” way—that is, in the way in which they were intended
to be used. By that token, the Color Don’t Care register is clearly intended to mask one or more planes
out of a color comparison, and as such, has limited use. However, the Color Don’t Care register
becomes far more interesting in exactly the “extreme” case described above, where all planes become
“don’t care” planes.

Why? Well, as I’ve said, when all planes are “don’t care” planes, read mode 1 reads always return
OFFH. Now, when you AND any value with OFFH, the value remains unchanged, and that can be
awfully handy when you’re using the bit mask to modify selected pixels in VGA memory. Recall that
you must always read VGA memory to load the latches before writing to VGA memory when you’re
using the bit mask. Traditionally, two separate instructions—a read followed by a write—are used to
perform this task. The code in Listing 28.2 uses this approach. Suppose, however, that you’ve set the
VGA to read mode 1, with the Color Don’t Care register set to 0 (meaning all reads of VGA memory
will return OFFH). Under these circumstances, you can use a single AND instruction to both read and
write VGA memory, since ANDing any value with OFFH leaves that value unchanged.

!Previous”Table of ContentsHNext|

Graphics Programming Black Book © 2001 Michael Abrash

http://www.phatcode.net/res/224/files/html/index.html
http://www.phatcode.net/res/224/files/html/ch28/28-05.html
http://www.phatcode.net/res/224/files/html/ch28/28-03.html

