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Special-Purpose Digital Circuits

• Buffer Circuits
• Path-Selector Circuits
• Information-Storing Circuits
• Trigger Circuits
• Multi-Vibrator Circuits
• Voltage-Generator Circuits

CMOS Logic Circuit Design
http://www.rcns.hiroshima-u.ac.jp

Link（リンク）: センター教官講義ノート の下 CMOS論理回路設計
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Necessary Functions other than Logic Operations

CMOS logic circuits do contain more than only logic gates.

1) Transmission of signals over long interconnection lines 
or to many receivers

- Buffer (inverting, non-inverting, tri-state)
2) Selection of an interconnection for a Signal according to a condition

- Selector (multiplexer, demultiplexer)
3) Storing an information for some time

- Flip-flop, latch
4) Removing Noise from a Signal

- Trigger circuits
5) Generation of Synchronous or Asynchronous Control Signal

- Multi-vibrator circuits (a-stable, bi-stable, mono-stable)
6) Generation of other Voltages than VDD or VSS

- Voltage generator circuits
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Buffer Circuits
- Increasing the driving capability of a logic

signal for large load capacities
- Conventional non-inverting buffers
- Inverting buffers
- Tri-state buffers
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Reduction of Logic-Gate Fan-Out with a Buffer

The delay of a circuit with large fan-out (i. e. large output 
load) can be reduced with a buffer, if (k-1)·trex > tbuffer is valid.
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Construction of Non-Inverting CMOS Buffers 

Non-inverting buffers have even number of inverters. Each 
stage has a factor Ani-buffer (Cload,Cin) larger driving capability.

VSS

Cload

VoutVin

Vin

VSS

Cload

Vout

I1 I2 I2N-1 I2N

A 0 Wp

Wn

A1 Wp

Wn

A 2N −2 Wp

Wn

A 2N −1 Wp

Wn

Optimum choice of A and N

N2
1

1in

load
bufferni C

C
A 








=−









=−

1in

load
2
1

bufferni C

C
lnintN
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Construction of Inverting CMOS Buffers 

Inverting buffers use an odd number of cascaded inverters. 
Each stage has again Ai-buffer(Cload,Cin) larger driving capability.

VSS

Cload

VoutVin Optimum Choice of A and N

1N2
1

1in

load
bufferi C

C
A

+

− 







=









−








=− 2

1

1in

load
2
1

bufferi C

C
lnintN

Vin

VSS

Cload

Vout

I1 I2 I2N I2N+1

A 0 Wp

Wn

A1 Wp

Wn

A 2N −1 Wp

Wn

A 2N Wp

Wn

I3

A 2 Wp

Wn

(Cin1 is the input capacity of the 1st inverter)



Mattausch, CMOS Design, H20/5/2 7

Tri-State Inverter

A tri-state inverter has an additional high-impedance or 
floating output state selected with an enable signal. It can be 

built with a conventional inverter and a transmission gate.
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Tri-State Buffers

A tri-state buffer combines high driving capability for a large 
load capacity Cload and the possibility of a floating output.

non-inverting 
tri-state buffer
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Path-Selector Circuits 
- Multiplexer- and Demultiplexer Principles
- Implementation with Transmission Gates
- Series Connection of Transmission Gates
- Implementation with Tri-State Inverters or 

Tri-State Buffers
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Multiplexer and Demultiplexer Principles

Conditional signal-path selection is performed with 
multiplexer- or demultiplexer circuits.
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Circuits 

Multiplexer Realization with Transmission Gates

Path-selector realization is easiest by transmission gates.
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Series Connection of Transmission Gates

A series connection of N transmission gates represents an 
RC-chain. Therefore, its delay time increases with N2.

tPS,hl ≈ tPS,lh ≈ Rn || Rp( )Cload( )⋅ N+ 0.35 ⋅ Rn || Rp( )Cinn + Cinp( )⋅ N2

Series of N 
transmission gates 

driving a load 

Delay model for a 
series of N 

transmission gates

Delay equation as a 
function of N 

transmission gates
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MUX/DEMUX Realization with Tri-State Buffers

With tri-state buffers the delay problem of  signal-path 
selectors is solved at the cost of larger integration-area.
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Information-Storing Circuits 
- Stabilizing-Feedback Principle
- Set-Reset Flip-Flop
- Clocked Flip-Flops

• Level Sensitive Flip-Flops
• Edge-Triggered Flip-Flops
• Flip-Flop Timing
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Stabilizing-Feedback Principle of Data Storage

By feeding back the identical signal to a circuit node, stable 
circuit states result, which are usable for data storage.
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Set-Reset (SR) Flip-Flop

Set-reset flip-flops extend the stabilizing feedback principle 
by a method for external modification of the stored data.
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Level-Sensitive Data (D) Flip-Flop

The level-sensitive data (D) flip-flop extends the SR flip-flop 
with additional circuitry for clock-controlled writing of data.

Circuit diagram 
(constructed with NAND gates)
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Latch: Transmission-Gate Version of D Flip-Flop

The simplest construction of level-sensitive data (D) flip-flops 
has 2 inverters and 2 transmission gates and is called “latch”.

Circuit diagram of a latch 
(data flip-flop constructed with inverters and transmission gates)
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Edge-Triggered data (D) Flip-Flop

The edge-triggered D flip-flop has 2 latches. Data transfer to 
the slave latch occurs only at transition edges of the clock.

Circuit diagram of a D flip-flop into which data is written at 
the positive edge (low-high) change of the clock

(constructed with 2 latches)
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Timing of Flip-Flops for Safe Data Writing

The safe operation of a flip-flop requires stable data signals 
for a minimum time around the clock edge, which determines 

data transfer into the storage part of the flip-flop.

Time
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D
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Set-up time ts hold time th

Minimum stable data time ts+th

positive edge of the clock  signal
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Trigger Circuits 
- Removal Possibilities of Signal Noise 
- Schmitt-Trigger Circuit
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Signal Noise and Removal Possibilities

Noise can be removed from a signal with a circuit who has 
different switching points for low-high and high-low transition.
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Schmitt-Trigger Circuit

The CMOS inverter circuit can be easily modified to obtain an 
inverting Schmitt-trigger circuit to reduce input-signal noise.
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Multi-Vibrator Circuits 
- Destabilizing-Feedback Principle
- A-Stable Multi-Vibrator or Oscillator
- Bi-Stable Multi-Vibrator or Flip-Flop 

(see Part on Information-Storing Circuits)
- Mono-Stable Multi-Vibrator 
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Destabilizing Feedback: Oscillator Circuits

By feeding back the inverted signal to a circuit node, an 
unstable state is occurs, which is used for oscillator circuits.

Destabilizing inverter-
feedback coupling

Resulting unstable (oscillating) 
signals at circuit nodes
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Ring-Oscillator Circuit with N Stages

CMOS oscillators can be constructed with an odd number of 
inverters. The oscillator frequency fosc is determined by 

inverter low-high/high-low transitions and inverter number.

Ring-Oscillator constructed with 
an odd number N of inverters

Obtained oscillator 
frequency

Vosc

fosc ≈
1

N⋅ tIHL + tILH( )
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Mono-Stable Multi-Vibrator

A mono-stable multi-vibrator is a circuit with delayed stable 
feedback. Thus pulses with fixed length can be generated.
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Mono-stable multi-vibrator example 
constructed with NOR and inverter

Generation of long pulse with fixed 
length by short trigger pulse at input

t pulse ≈ RC⋅ ln
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VDD− VSP,I

tpulse
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Voltage-Generator Circuits 
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Simple Generator for Voltages >VDD and <VSS

Voltage-generator circuits are applied, if the circuits in the 
CMOS chip need other supply voltages than VDD and VSS.

High-voltage generator Transient output of the high 
voltage generator

Low-voltage generator

Vout ≈ 2VDD− 2VTH, n

Vout ≈ −VDD+ 2VTH, n


