CMOS Logic Circuit Design

<u>http://www.rcns.hiroshima-u.ac.jp</u> Link(リンク): <u>センター教官講義ノート</u>の下 <u>CMOS論理回路設計</u>

Special-Purpose Digital Circuits

- Buffer Circuits
- Path-Selector Circuits
- Information-Storing Circuits
- Trigger Circuits
- Multi-Vibrator Circuits
- Voltage-Generator Circuits

Necessary Functions other than Logic Operations

- 1) Transmission of signals over long interconnection lines or to many receivers
 - Buffer (inverting, non-inverting, tri-state)
- 2) Selection of an interconnection for a Signal according to a condition
 - Selector (multiplexer, demultiplexer)
- 3) Storing an information for some time
 - Flip-flop, latch
- 4) Removing Noise from a Signal
 - Trigger circuits
- 5) Generation of Synchronous or Asynchronous Control Signal
 - Multi-vibrator circuits (a-stable, bi-stable, mono-stable)
- 6) Generation of other Voltages than VDD or VSS
 - Voltage generator circuits

CMOS logic circuits do contain more than only logic gates.

Buffer Circuits

- Increasing the driving capability of a logic signal for large load capacities
- Conventional non-inverting buffers
- Inverting buffers
- Tri-state buffers

Reduction of Logic-Gate Fan-Out with a Buffer

NAND-gate with fan-out = k, fan-in = m 2^{1}_{3} m^{-1}_{m} Delay without buffer

 $t_{df,NAND} = \mathbf{m} \cdot (\mathbf{m} \cdot t_{fin} + \mathbf{k} \cdot t_{fex})$ $t_{dr,NAND} = \mathbf{m} \cdot t_{rin} + \mathbf{k} \cdot t_{rex}$

NAND-gate with fan-out = 1, fan-in = m

Delay with buffer $t_{df,NAND} = \mathbf{m} \cdot (\mathbf{m} \cdot t_{fin} + t_{fex}) + t_{buffer}$ $t_{dr,NAND} = \mathbf{m} \cdot t_{rin} + t_{rex} + t_{buffer}$

The delay of a circuit with large fan-out (i. e. large output load) can be reduced with a buffer, if $(k-1) \cdot t_{rex} > t_{buffer}$ is valid.

Construction of Non-Inverting CMOS Buffers

Optimum choice of A and N

$$\mathbf{A}_{\text{ni-buffer}} = \left[\frac{\mathbf{C}_{\text{load}}}{\mathbf{C}_{\text{in}1}}\right]^{\frac{1}{2N}}$$

$$N_{ni-buffer} = int \left[\frac{1}{2}ln\frac{C_{load}}{C_{in1}}\right]$$

(C_{in1} is the input capacity of the 1st inverter)

Non-inverting buffers have even number of inverters. Each stage has a factor $A_{ni-buffer}$ (C_{load} , C_{in}) larger driving capability.

Construction of Inverting CMOS Buffers

Optimum Choice of A and N

$$\mathbf{A}_{\text{i-buffer}} = \left[\frac{\mathbf{C}_{\text{load}}}{\mathbf{C}_{\text{in}1}}\right]^{\frac{1}{2N+1}}$$

$$N_{i-buffer} = int \left[\frac{1}{2} ln \left(\frac{C_{load}}{C_{in1}} \right) - \frac{1}{2} \right]$$

(C_{in1} is the input capacity of the 1st inverter)

Inverting buffers use an odd number of cascaded inverters. Each stage has again $A_{i-buffer}(C_{load}, C_{in})$ larger driving capability.

Tri-State Inverter

<u>Symbol</u>

Truth Table

En	In	Out
0	0	floating
0	1	floating
1	0	1
1	1	0

CMOS-Circuit Implementation

A tri-state inverter has an <u>additional high-impedance or</u> <u>floating output state</u> selected with an enable signal. It can be built with a conventional inverter and a transmission gate.

Tri-State Buffers

A tri-state buffer combines high driving capability for a large load capacity C_{load} and the possibility of a floating output.

Path-Selector Circuits

- Multiplexer- and Demultiplexer Principles
- Implementation with Transmission Gates
- Series Connection of Transmission Gates
- Implementation with Tri-State Inverters or Tri-State Buffers

Multiplexer and Demultiplexer Principles

Conditional signal-path selection is performed with multiplexer- or demultiplexer circuits.

Multiplexer Realization with Transmission Gates

Transmission Gates

<u>4-Input Multiplexer</u>

Minimum Transmission Gates

Minimum Select Signals

Path-selector realization is easiest by transmission gates.

Series Connection of Transmission Gates

Series of N transmission gates driving a load

Delay model for a series of N transmission gates

Delay equation as a function of N transmission gates

$$t_{PS,hl} \approx t_{PS,lh} \approx \left(R_n \parallel R_p\right) (C_{load}) \cdot \mathrm{N} + 0.35 \cdot \left(R_n \parallel R_p\right) (C_{inn} + C_{inp}) \cdot \mathrm{N}^2$$

A series connection of N transmission gates represents an RC-chain. Therefore, its delay time increases with N².

MUX/DEMUX Realization with Tri-State Buffers

Multiplexer

Demultiplexer

With tri-state buffers the delay problem of signal-path selectors is solved at the cost of larger integration-area.

Information-Storing Circuits

- Stabilizing-Feedback Principle
- Set-Reset Flip-Flop
- Clocked Flip-Flops
 - Level Sensitive Flip-Flops
 - Edge-Triggered Flip-Flops
 - Flip-Flop Timing

Stabilizing-Feedback Principle of Data Storage

Stabilizing inverterfeedback coupling

Resulting stable circuit states

Stable States	Q	Q
"one"	1	0
"zero"	0	1

By feeding back the identical signal to a circuit node, stable circuit states result, which are usable for data storage.

Set-Reset (SR) Flip-Flop

Circuit diagram (constructed with NAND gates)

Q

Q

S

R

Logic Symbol

Truth table

Set-reset flip-flops extend the stabilizing feedback principle by a method for external modification of the stored data.

Level-Sensitive Data (D) Flip-Flop

Circuit diagram (constructed with NAND gates) **Logic Symbol**

The level-sensitive data (D) flip-flop extends the SR flip-flop with additional circuitry for clock-controlled writing of data.

Latch: Transmission-Gate Version of D Flip-Flop

Circuit diagram of a latch

(data flip-flop constructed with inverters and transmission gates)

The simplest construction of level-sensitive data (D) flip-flops has 2 inverters and 2 transmission gates and is called "latch".

Edge-Triggered data (D) Flip-Flop

Circuit diagram of a D flip-flop into which data is written at the positive edge (low-high) change of the clock (constructed with 2 latches)

The edge-triggered D flip-flop has 2 latches. Data transfer to the slave latch occurs only at transition edges of the clock.

Timing of Flip-Flops for Safe Data Writing

The safe operation of a flip-flop requires stable data signals for a minimum time around the clock edge, which determines data transfer into the storage part of the flip-flop.

Trigger Circuits

- Removal Possibilities of Signal Noise
- Schmitt-Trigger Circuit

Signal Noise and Removal Possibilities

Noise can be removed from a signal with a circuit who has different switching points for low-high and high-low transition.

Schmitt-Trigger Circuit

Design of n-MOS Transistors M1 and M2 determines the High-Switching Point

$$\frac{\beta_1}{\beta_2} \approx \left[\frac{\text{VDD} - \text{V}_{\text{SPH}}}{\text{VSS} + \text{V}_{\text{SPH}} - \text{V}_{\text{TH,n}}}\right]^2$$

Design of p-MOS Transistors M5 and M6 determines the Low-Switching Point

$$\frac{\beta_5}{\beta_6} \approx \left[\frac{\text{VSS} + \text{V}_{\text{SPL}}}{\text{VDD} - \text{V}_{\text{SPL}} - \text{V}_{\text{TH,p}}}\right]^2$$

The CMOS inverter circuit can be easily modified to obtain an inverting Schmitt-trigger circuit to reduce input-signal noise.

Multi-Vibrator Circuits

- Destabilizing-Feedback Principle
- A-Stable Multi-Vibrator or Oscillator
- Bi-Stable Multi-Vibrator or Flip-Flop (see Part on Information-Storing Circuits)
- Mono-Stable Multi-Vibrator

Destabilizing Feedback: Oscillator Circuits

Destabilizing inverterfeedback coupling Resulting unstable (oscillating) signals at circuit nodes

By feeding back the inverted signal to a circuit node, an unstable state is occurs, which is used for oscillator circuits.

Ring-Oscillator Circuit with N Stages

Obtained oscillator frequency

 $f_{osc} \approx \frac{1}{N \cdot (t_{mm} + t_{mm})}$

CMOS oscillators can be constructed with an odd number of inverters. The oscillator frequency f_{osc} is determined by inverter low-high/high-low transitions and inverter number.

Mono-Stable Multi-Vibrator

Mono-stable multi-vibrator example constructed with NOR and inverter

Generation of long pulse with fixed length by short trigger pulse at input

A mono-stable multi-vibrator is a circuit with delayed stable feedback. Thus pulses with fixed length can be generated.

Voltage-Generator Circuits

Simple Generator for Voltages >VDD and <VSS

High-voltage generator

Low-voltage generator

Transient output of the high voltage generator

Voltage-generator circuits are applied, if the circuits in the CMOS chip need other supply voltages than VDD and VSS.