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Special-Purpose Digital Circuits

 Buffer Circuits

» Path-Selector Circuits
 Information-Storing Circuits
 Trigger Circuits

o Multi-Vibrator Circuits
 Voltage-Generator Circuits
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Necessary Functions other than Logic Operations

1) Transmission of signals over long interconnection lines
or to many receivers
- Buffer (inverting, non-inverting, tri-state)
2) Selection of an interconnection for a Signal according to a condition
- Selector (multiplexer, demultiplexer)
3) Storing an information for some time
- Flip-flop, latch
4) Removing Noise from a Signal
- Trigger circuits
5) Generation of Synchronous or Asynchronous Control Signal
- Multi-vibrator circuits (a-stable, bi-stable, mono-stable)
6) Generation of other Voltages than VDD or VSS
- Voltage generator circuits

CMOS logic circuits do contain more than only logic gates.
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Buffer Circuits
- Increasing the driving capability of a logic
signal for large load capacities
- Conventional non-inverting buffers
- Inverting buffers
- Tri-state buffers
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Reduction of Logic-Gate Fan-Out with a Buffer

NAND-gate with NAND-gate with
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The delay of a circuit with large fan-out (i. e. large output
load) can be reduced with a buffer, if (k-1)-t,., >t e 1S Valid.
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Construction of Non-Inverting CMOS Buffers
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Non-inverting buffers have even number of inverters. Each
stage has a factor A, «er (Cioaq:Cin) larger driving capability.

Mattausch, CMOS Design, H20/5/2 5



Construction of Inverting CMOS Buffers

Vin ’ - Vout Optimum Choice of A and N
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Inverting buffers use an odd number of cascaded inverters.
Each stage has again A, ,+(Ci0aq,Ciny) 1@rger driving capability.
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Tri-State Inverter
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A tri-state inverter has an additional high-impedance or
floating output state selected with an enable signal. It can be
built with a conventional inverter and a transmission gate.
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Tri-State Buffers
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A tri-state buffer combines high driving capability for a large
load capacity C,,,4 and the possibility of a floating output.
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Path-Selector Circuits

Multiplexer- and Demultiplexer Principles

Implementation with Transmission Gates

Series Connection of Transmission Gates
Implementation with Tri-State Inverters or
Tri-State Buffers
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Multiplexer and Demultiplexer Principles

between In(N) and N between In(N) and N
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Conditional signal-path selection is performed with
multiplexer- or demultiplexer circuits.
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Multiplexer Realization with Transmission Gates

4-Input Multiplexer

Transmission Gates

Minimum Transmission Gates
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Path-selector realization is easiest by transmission gates.
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Series Connection of Transmission Gates

Series of N
transmission gates
driving a load

Delay model for a
series of N
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A series connection of N transmission gates represents an
RC-chain. Therefore, its delay time increases with N2.
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MUX/DEMUX Realization with Tri-State Buffers
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With tri-state buffers the delay problem of signal-path
selectors is solved at the cost of larger integration-area.

Mattausch, CMOS Design, H20/5/2 13



Information-Storing Circuits

- Stabilizing-Feedback Principle
- Set-Reset Flip-Flop
- Clocked Flip-Flops

 Level Sensitive Flip-Flops
e Edge-Triggered Flip-Flops
 Flip-Flop Timing
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Stabilizing-Feedback Principle of Data Storage

Stabilizing inverter-

feedback coupling Resulting stable circuit states
> Stable States| Q | Q
1 —— “one” 1 | 0
Q Q
< “zero” 0 1

By feeding back the identical signal to a circuit node, stable
circuit states result, which are usable for data storage.
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Set-Reset (SR) Flip-Flop

Circuit diagram Logic Symbol Truth table
(constructed with NAND gates)
S— B S|IR|Q | Q
Q _1s Ql— 0|01 |1
SR
Flip-Flop 11011 0
— R Q— o|1]o | 1
I Q 11| ]| ©

Set-reset flip-flops extend the stabilizing feedback principle
by a method for external modification of the stored data.
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Level-Sensitive Data (D) Flip-Flop

Circuit diagram Logic Symbol
(constructed with NAND gates)
D
FOTr. T F.r
SR D
CLK — Flip-Flop Flip-Flop
} R Q —{CLK Q [—

The level-sensitive data (D) flip-flop extends the SR flip-flop
with additional circuitry for clock-controlled writing of data.

Mattausch, CMOS Design, H20/5/2 17



Latch: Transmission-Gate Version of D Flip-Flop

Circuit diagram of a latch
(data flip-flop constructed with inverters and transmission gates)

CLK —o

-

| B | Q

oet=l >0 L

The simplest construction of level-sensitive data (D) flip-flops
has 2 inverters and 2 transmission gates and is called “latch”.
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Edge-Triggered data (D) Flip-Flop

Circuit diagram of a D flip-flop into which data is written at

the positive edge (low-high) change of the clock
(constructed with 2 latches)
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The edge-triggered D flip-flop has 2 latches. Data transfer to
the slave latch occurs only at transition edges of the clock.
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Timing of Flip-Flops for Safe Data Writing

Volt — D
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The safe operation of a flip-flop requires stable data signals
for aminimum time around the clock edge, which determines
data transfer into the storage part of the flip-flop.
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Trigger Circuits

- Removal Possiblilities of Signal Noise
- Schmitt-Trigger Circuit
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Signal Noise and Removal Possibllities
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Noise can be removed from a signal with a circuit who has
different switching points for low-high and high-low transition.
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Schmitt-Trigger
Symbol

CMOS
Circuit

Schmitt-Trigger Circuit
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The CMOS inverter circuit can be easily modified to obtain an
Inverting Schmitt-trigger circuit to reduce input-signal noise.
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Multi-Vibrator Circuits

- Destablilizing-Feedback Principle
- A-Stable Multi-Vibrator or Oscillator
- Bi-Stable Multi-Vibrator or Flip-Flop

(see Part on Information-Storing Circuits)
- Mono-Stable Multi-Vibrator
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Destabilizing Feedback: Oscillator Circuits

Destabilizing inverter- Resulting unstable (oscillating)
feedback coupling signals at circuit nodes
Qi/\
>C VDD
Q. Q,
Qs TiFne

By feeding back the inverted signal to a circuit node, an
unstable state is occurs, which is used for oscillator circuits.
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Ring-Oscillator Circuit with N Stages

Ring-Oscillator constructed with Obtained oscillator
an odd number N of inverters frequency

>> |
VA Foo = Nt + tn)
w<4<><

CMQOS oscillators can be constructed with an odd number of
Inverters. The oscillator frequency f .. Is determined by
iInverter low-high/high-low transitions and inverter number.
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Mono-Stable Multi-Vibrator

Mono-stable multi-vibrator example Generation of long pulse with fixed
constructed with NOR and inverter length by short trigger pulse at input

N
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A mono-stable multi-vibrator is a circuit with delayed stable
feedback. Thus pulses with fixed length can be generated.
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Voltage-Generator Circults
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Simple Generator for Voltages >VDD and <VSS

High-voltage generator Transient output of the high
VDD voltage generator
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Voltage-generator circuits are applied, if the circuits in the
CMOS chip need other supply voltages than VDD and VSS.
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