'  2' '75ư>(HELPNA\NhNN:l|CONTINUE n((pxEXIT&%p=lHALTމPl|dSTEP 1r4߉lg STOP߉X^F%EFSTOP ,,OFFg^w@߉U T߉W O9gp߉.Od9?g|߉CONDUCT BestLines(1,4,1)gSHOW (FillMatrix())psLFeCFSHOW (ANOVA(MainResult,5,1))E(((((((((({\rtf1\ansi\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fmodern Courier New;}} {\colortbl\red0\green0\blue0;} \deflang1033\pard\tx1200\tx2400\tx4450\plain\f2\fs20 ; GPSS World Sample File - Graeco Latin Square 4 A.GPS \par *********************************************************************** \par * * \par * Graeco Latin Square Experimental Design (for 4 levels) * \par * Without a separate estimate of the S.E., we * \par * must use a replicated G-L Square. * \par * * \par * Efficient Design for * \par * 1. Four Factors * \par * 2. Invariant # levels across factors * \par * 3. All Interactions Ignored * \par * 4. No replicates * \par * * \par * * \par * Use ANOVA(-,5,1) For Replicated 4 x 4 Graeco Latin Squares * \par * * \par * PROBLEM: Unreplicated Graeco Latin Squares do not provide * \par * an estimate of the SE. * \par * * \par * * \par * Function Key Assignments in Latin Square 4 B.gps: * \par * F11 - SHOW (FillMatrix()) * \par * F12 - SHOW (ANOVA(MainResult,5,1)) * \par * * \par *********************************************************************** \par \par * Define the Global Experimental Result Matrix * \par * 4 Level Graeco Latin Square: Max of 4 Levels of \par * Factors A, B, C, and D, plus 2 replicates. * \par MainResult MATRIX ,4,4,4,4,2 \par \par * Initialize matrix elements to UNSPECIFIED instead of 0.0 \par INITIAL MainResult,UNSPECIFIED \par \par * Define a Table to receive the ANOVA residuals. \par MainResult_Residuals TABLE ,-10,1,20 \par \par *********************************************** \par * Latin Square Experimental Design \par * (adapted from Peng (1966), p100) \par * \par * Factor A (Row) 1 - 4 \par * Factor B (Col) 1 - 4 \par * Factor C a, b, c, d \par * Factor D 1, 2, 3, 4 \par * 'Factor' E 2 Replicates \par * \par * 1 2 3 4 \par * 1 a1 34 b2 31 c3 15 d4 28 \par * 2 b4 28 a3 37 d2 17 c1 10 \par * 3 c2 12 d1 21 a4 33 b3 26 \par * 4 d3 26 c4 23 b1 23 a2 36 \par * \par *********************************************** \par \par \par \par \par PROCEDURE FillMatrix() BEGIN \par \par \tab MainResult[1,1,1,1,1] = 34; \par \tab MainResult[1,2,2,2,1] = 31; \par \tab MainResult[1,3,3,3,1] = 15; \par \tab MainResult[1,4,4,4,1] = 28; \par \tab MainResult[2,1,2,4,1] = 28; \par \tab MainResult[2,2,1,3,1] = 37; \par \tab MainResult[2,3,4,2,1] = 17; \par \tab MainResult[2,4,3,1,1] = 10; \par \tab MainResult[3,1,3,2,1] = 12; \par \tab MainResult[3,2,4,1,1] = 21; \par \tab MainResult[3,3,1,4,1] = 33; \par \tab MainResult[3,4,2,3,1] = 26; \par \tab MainResult[4,1,4,3,1] = 26; \par \tab MainResult[4,2,3,4,1] = 23; \par \tab MainResult[4,3,2,1,1] = 23; \par \tab MainResult[4,4,1,2,1] = 36; \par \par \tab MainResult[1,1,1,1,2] = 35; \par \tab MainResult[1,2,2,2,2] = 33; \par \tab MainResult[1,3,3,3,2] = 17; \par \tab MainResult[1,4,4,4,2] = 29; \par \tab MainResult[2,1,2,4,2] = 26; \par \tab MainResult[2,2,1,3,2] = 38; \par \tab MainResult[2,3,4,2,2] = 19; \par \tab MainResult[2,4,3,1,2] = 12; \par \tab MainResult[3,1,3,2,2] = 13; \par \tab MainResult[3,2,4,1,2] = 23; \par \tab MainResult[3,3,1,4,2] = 34; \par \tab MainResult[3,4,2,3,2] = 27; \par \tab MainResult[4,1,4,3,2] = 28; \par \tab MainResult[4,2,3,4,2] = 24; \par \tab MainResult[4,3,2,1,2] = 25; \par \tab MainResult[4,4,1,2,2] = 33; \par \par END; \par \par \par \par \par }