Университет ИТМО

Кафедра вычислительной техники

Отчёт по лабораторной работе № 2 по дисциплине: "Цифровая схемотехника" Вариант №3

Студентка: Куклина М.Д. Группа Р3201

Преподаватель: Пинкевич В.Ю.

Содержание

- 1. Цели работы
- 2. Схема мажоритарного контроля с пятью входами
- 3. Реализация заданной функции.
- 4. Вывод

Цели работы

- 1. Получение базовых знаний о принципах построения и функционирования цифровых комбинационных схем
- 2. Изучение схемотехники базовых операционных элементов цифровых комбинационных схем.

Вариант 3:

- 1. БОЭ: Схема мажоритарного контроля с пятью входами.
- 2. Функция: if((X2+X2) == 0) Y = X1 X2; else Y = X2 + 2.

Схема мажоритарного контроля с пятью входами

Схемы контроля служат целям диагностики и исправления ошибок при передачи данных. Мажоритарные элементы выявляют доминантный сигнал из ряда поданных (число входов должно быть нечётным ради обеспечения доминантности сигналов) и дают его на выход.

Для пяти выходов аналитическая формула в булевом базисе: $F=F_1F_2F_3\vee F_1F_2F_4\vee F_1F_2F_5\vee F_1F_3F_4\vee F_1F_3F_5\vee F_1F_4F_5\vee F_2F_4F_5\vee F_3F_4F_5$

В упрощённая функция в базисе И-НЕ: $F=(F_1|(\overline{(F_2|F_3)|(F_4|F_5)}|(\overline{F_2}|\overline{F_3})|(\overline{F_4}|\overline{F_5}))))|(\overline{F_4|F_5}|(\overline{F_2}|\overline{F_3}))$

В схеме были использованы элементы, разработанные в прошло лабораторной работе.

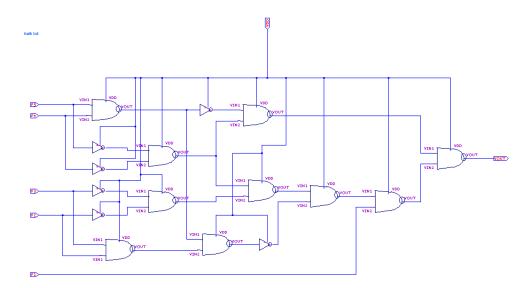


Рис. 1. Схема мажоритарного элемента.

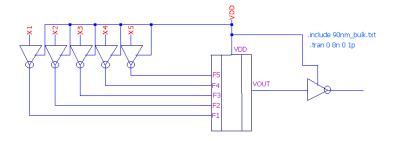


Рис. 2. Тестовая схема.

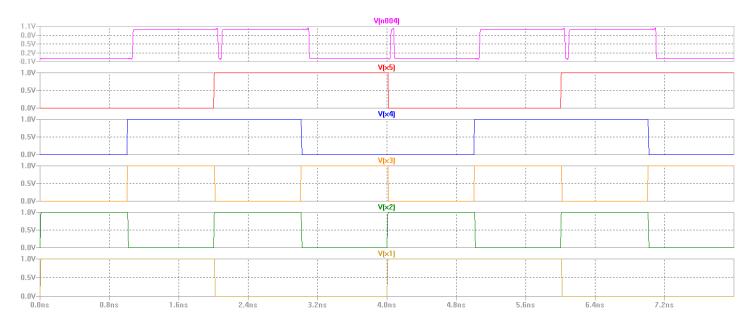


Рис. 3. График.

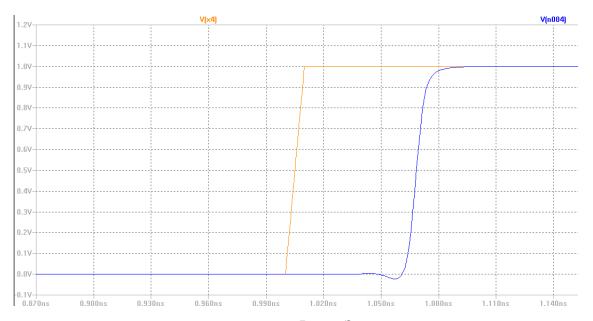


Рис. 4. Задержка.

Из рис. 4. следует, что задержка составляет примерно $0.06~\mathrm{ns}.$

Таблица 1. Таблица истинности.

F1	F2	F3	F4	F5	F	F1	F2	F3	F4	F5	F
0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	1	0	0	0	1	0
0	0	0	1	0	0	1	0	0	1	0	0
0	0	0	1	1	0	1	0	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0	0
0	0	1	0	1	0	1	0	1	0	1	1
0	0	1	1	0	0	1	0	1	1	0	1
0	0	1	1	1	1	1	0	1	1	1	1
0	1	0	0	0	0	1	1	0	0	0	0
0	1	0	0	1	0	1	1	0	0	1	0
0	1	0	1	0	0	1	1	0	1	0	1
0	1	0	1	1	0	1	1	0	1	1	1
0	1	1	0	0	0	1	1	1	0	0	1
0	1	1	0	1	1	1	1	1	0	1	1
0	1	1	1	0	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1

Реализация заданной функции.

Функция: if ((X2+X2) == 0) Y = X1 — X2; else Y = X2 + 2.

Используемые элементы:

1. Сумматор

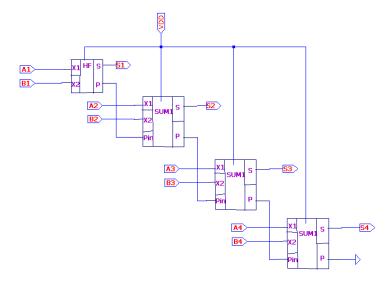


Рис. 5. Схема суммтора

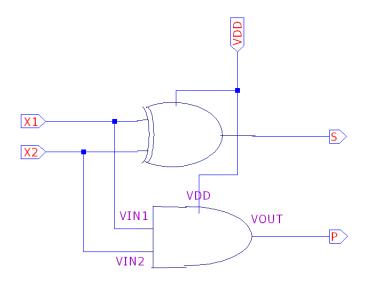


Рис. 6. Схема полусуммтора

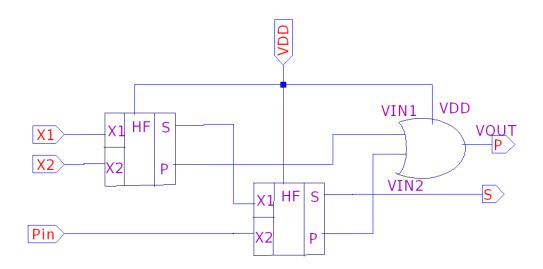


Рис. 7. Схема одноразрядного суммтора

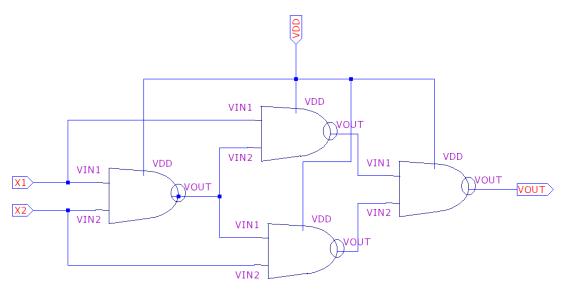


Рис. 8. Схема XOR

2. Компаратор



Рис. 9. Схема компаратора.

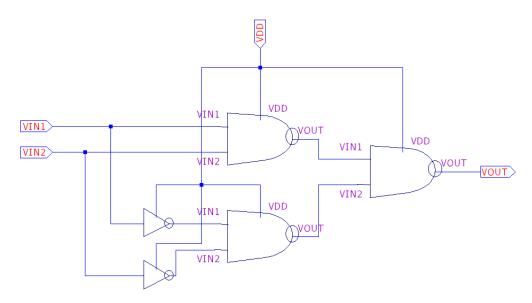


Рис. 10. Схема двуразрядного компаратора.

3. Мультиплексер

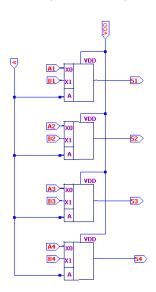


Рис. 11. Схема мультиплексера.

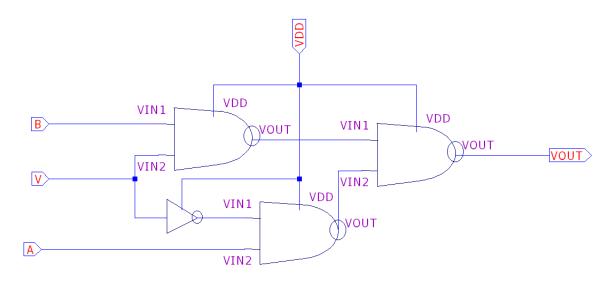


Рис. 12. Схема двуразрядного мультиплексера.

Таким образом, схема заданной функции на приведённых выше элементах:

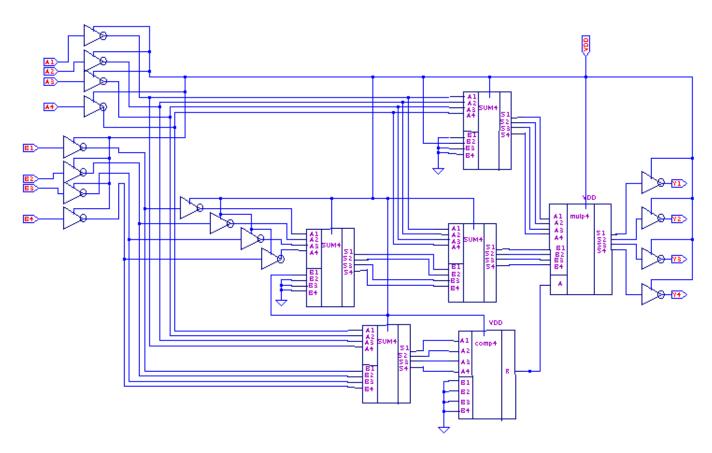


Рис. 13. Схема функции с контролируемыми входами и выходами.

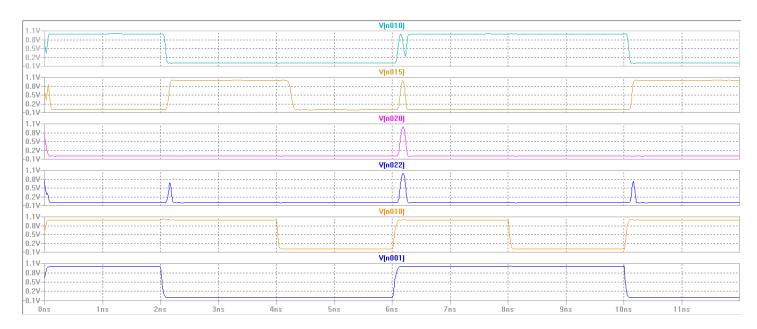


Рис. 14. График сигналов через схему.

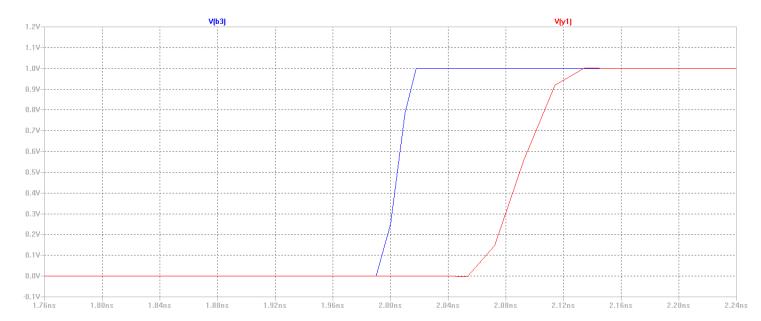


Рис. 15. Задержка между входом В3 и выходом Y1 в 0.08 ns.

Вывод

В ходе выполнения лабораторной работы производилось изучение базовых опреационных элементов, особенности их работы и способы их комбинирования.

В первом задании была разработана схема мажоритарного контроля на основе таблицы истинности, из которой путём использования методов синтеза комбанационных схем была выведена булевая функция в базисе Шеффера. Для реализации заданной функции были использованы навыки, обретённые при выполнении первого задания, по созданию БОЭ; проведённые тесты свидетельствуют об отсутствии серьёзных ошибок. Из графиков уровней сигнала наблюдается, что сигналы искажаются, проходя через многоуровневые каскады, однако из-за свойства регенеративности искажения не приводят к неверному результату.