## Университет ИТМО Кафедра ВТ

# Моделирование

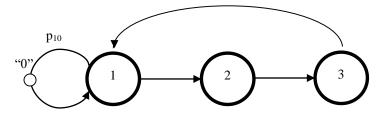
Курсовая работа «Исследование сетей массового обслуживания» Вариант 13/9

Выполнил: Хайруллин Вадим

Гр. Р3315

Преподаватель: Муравьева - Витковская Л.А.

### 1. Цель работы:


Комплексное исследование характеристик функционирования замкнутых и разомкнутых сетей массового обслуживания (CeMO) с однородным потоком заявок с использованием методов аналитического, численного и имитационного моделирования и изучение свойств и закономерностей, присущих процессам, протекающим в них.

#### 2. Исходные данные:

| К-во    | Кол-во пр | иборов в уз | лах | К-во        | Номер | Тип    | К-во      |
|---------|-----------|-------------|-----|-------------|-------|--------|-----------|
| узлов п | У1        | У2          | У3  | заявок<br>М | узла  | модели | состояний |
| 3       | 1         | 1           | 2   | 4           | 1     | M2     | 15        |

Для неэкспоненциальной модели CeMO распределение длительности обслуживания заменяется на Эрланга 2-го порядка

#### Модель М2:



| Вероятности<br>передач | Средние | длительности обслужи | івания, с      |  |  |
|------------------------|---------|----------------------|----------------|--|--|
| p <sub>10</sub>        | $b_1$   | $b_2$                | b <sub>3</sub> |  |  |
| 0,25                   | 0,25    | 0,25                 | 0,5            |  |  |

## 3. Разработка моделей

# 3.1. Разработка аналитических моделей замкнутой CeMO (3CeMO) и разомкнутой CeMO (PCeMO)

Разработка аналитических моделей 3CeMO и PCeMO заключается в подготовке следующих исходных данных (параметров) для проведения расчетов аналитическими методами:

- 1) Количество узлов СеМО: n=3
- 2) Количество обслуживающих приборов в узлах CeMO:  $Y_1=1$   $Y_2=1$   $Y_3=2$
- 3) Матрица вероятностей передач и рассчитанные по этой матрице коэффициенты:

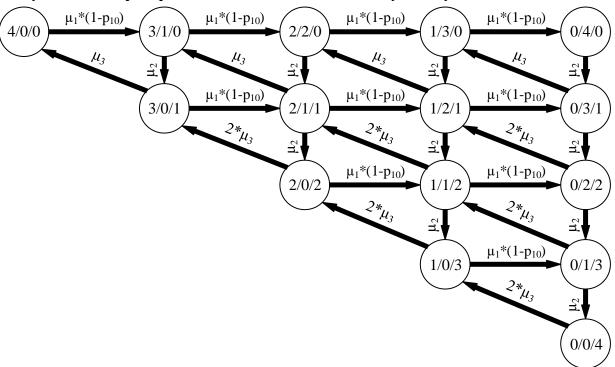
|   | 0    | 1   | 2    | 3   | $\sum$ |
|---|------|-----|------|-----|--------|
| 0 | 0.0  | 1.0 | 0.0  | 0.0 | 1.0    |
| 1 | 0.25 | 0.0 | 0.75 | 0.0 | 1.0    |
| 2 | 0.0  | 0.0 | 0.0  | 1.0 | 1.0    |
| 3 | 0.0  | 1.0 | 0.0  | 0.0 | 1.0    |

| Узел сети                | 1    | 2    | 3    |
|--------------------------|------|------|------|
| Коэффициент передачи [α] | 4.00 | 3.00 | 3.00 |

4) Для замкнутой СеМО - число заявок, циркулирующих в сети, М=4

Для разомкнутой CeMO - интенсивность входящего потока заявок, поступающих в сеть **λ₀ =0,133** 

5) Средние длительности обслуживания заявок в узлах СеМО:


 $b_1=0,25$ 

 $b_2=0,25$ 

 $b_3=0,5$ 

### 3.2. Разработка марковских моделей ЗСеМО.

# 3.2.1. Экспоненциальная ЗСеМО (ЭЗСеМО), в которой длительности обслуживания заявок во всех узлах СеМО распределены по экспоненциальному закону.



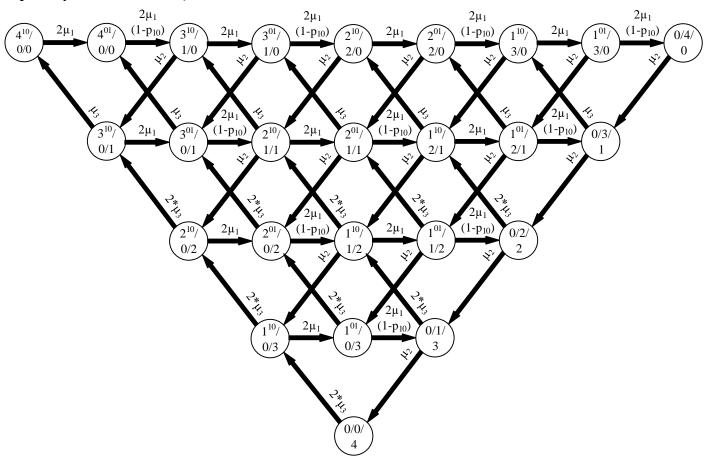
#### Пояснение:

первое число - количество заявок в первом узле

второе – во втором

третье – в третьем узле

 $\mu_1 = 1/b_1 = 4$ 


 $\mu_2 = 1/b_2 = 4$ 

 $\mu_3 = 1/b_3 = 2$ 

#### Перечень состояний для марковского процесса:

| Номер состояния | Код   | Номер состояния | Код   |
|-----------------|-------|-----------------|-------|
| 0               | 4/0/0 | 8               | 0/3/1 |
| 1               | 3/1/0 | 9               | 2/0/2 |
| 2               | 2/2/0 | 10              | 1/1/2 |
| 3               | 1/3/0 | 11              | 0/2/2 |
| 4               | 0/4/0 | 12              | 1/0/3 |
| 5               | 3/0/1 | 13              | 0/1/3 |
| 6               | 2/1/1 | 14              | 0/0/4 |
| 7               | 1/2/1 |                 |       |

### 3.2.2. неэкспоненциальной ЗСеМО (НЗСеМО), в которой длительность обслуживания заявок в одном из указанных узлов ЗСеМО распределена по закону Эрланга 2-го порядка (согласно варианту: 13 - нечетный).



#### Пояснение:

первое число означает количество заявок в первом узле

второе - количество заявок во втором

третье – количество заявок в третьем

Верхний индекс у первого числа означает соответствие экспоненциальному распределению (для реализации Эрланга 2-го порядка).

$$\mu_1=1/b_1=4$$
  
 $\mu_2=1/b_2=4$ 

$$\mu_{a} = 1/b_{a} = 2$$

$$\mu_3 = 1/b_3 = 2$$
.  
 $b_1^{10} = b_1^{01} = b_1/2$ .

Перечень состояний для марковского процесса:

| Номер состояния | Код                  | Номер состояния | Код                  |
|-----------------|----------------------|-----------------|----------------------|
| 0               | 410/0/0              | 13              | 110/2/1              |
| 1               | 401/0/0              | 14              | 101/2/1              |
| 2               | 310/1/0              | 15              | 0/3/1                |
| 3               | 3 <sup>01</sup> /1/0 | 16              | 210/0/2              |
| 4               | 210/2/0              | 17              | 2 <sup>01</sup> /0/2 |
| 5               | 2 <sup>01</sup> /2/0 | 18              | 110/1/2              |
| 6               | 110/3/0              | 19              | 1 <sup>01</sup> /1/2 |
| 7               | 101/3/0              | 20              | 0/2/2                |
| 8               | 0/4/0                | 21              | 110/0/3              |
| 9               | 310/0/1              | 22              | 101/0/3              |
| 10              | 3 <sup>01</sup> /0/1 | 23              | 0/1/3                |
| 11              | 2 <sup>10</sup> /1/1 | 24              | 0/0/4                |

12  $2^{01}/1/1$ 

#### 3.2.3. Разработка имитационных моделей разомкнутой СеМО

1) РСеМО-1 – разомкнутая сеть с экспоненциальным распределением длительностей обслуживания заявок в узлах и простейшим потоком заявок, поступающих в сеть

```
GPSS - модель:
UZEL 3 STORAGE
**********
         GENERATE (EXPONENTIAL (13, 0, 1.316))
         QUEUE Q_TOTAL
         QUEUE Q_1
STATE 1
         QUEUE Q_TOT
         QUEUE Q_11
         SEIZE PR 1
         DEPART Q_1
         DEPART Q_TOT
         ADVANCE (EXPONENTIAL (13, 0, .25))
         RELEASE PR 1
         DEPART Q_11
         TRANSFER 0.25,,FIN_ISH
STATE 2
         QUEUE Q_2
         QUEUE Q TOT
         QUEUE Q 21
         SEIZE PR 2
         DEPART Q 2
         DEPART Q TOT
         ADVANCE (EXPONENTIAL (13, 0, .25))
         RELEASE PR 2
         DEPART Q 21
STATE 3
         QUEUE Q 3
         QUEUE Q TOT
         QUEUE Q 31
         ENTER UZEL 3
         DEPART Q 3
         DEPART Q TOT
         ADVANCE (EXPONENTIAL (13,0,.5))
         LEAVE UZEL 3
         DEPART Q_31
         TRANSFER ,STATE_1
FIN_ISH
         DEPART Q_TOTAL
         TERMINATE 1
```

2) PCeMO-2 – разомкнутая сеть с экспоненциальным распределением длительностей обслуживания заявок в узлах и детерминированным потоком заявок, поступающих в сеть

TRANSFER 0.25,, FIN ISH

START 100000

GPSS – модель:

```
STATE 2
          QUEUE Q 2
          QUEUE Q TOT
          QUEUE Q 21
          SEIZE PR 2
          DEPART Q 2
          DEPART Q_TOT
          ADVANCE (EXPONENTIAL (13, 0, .25))
          RELEASE PR 2
          DEPART Q_21
STATE_3 QUEUE Q_3
          QUEUE Q_TOT
          QUEUE Q 31
          ENTER UZEL 3
          DEPART Q 3
          DEPART Q_TOT
          ADVANCE (EXPONENTIAL (13, 0, .5))
          LEAVE UZEL 3
          DEPART Q_31
          TRANSFER ,STATE_1
          DEPART Q TOTAL
FIN ISH
          TERMINATE 1
START 100000
GPSS – модель:
UZEL 3
       STORAGE
```

3) РСеМО-3 – разомкнутая сеть с неэкспоненциальным распределением (Эрланга 2-го порядка) длительности обслуживания заявок только в указанном узле (в том же, что и в марковской модели)

```
***********
         GENERATE (EXPONENTIAL(13,0,1.316))
         QUEUE Q TOTAL
STATE 1
         QUEUE Q_1
         QUEUE Q_TOT
         QUEUE Q_11
         SEIZE PR 1
         DEPART Q_1
         DEPART Q_TOT
         ADVANCE (EXPONENTIAL (13, 0, .125) +EXPONENTIAL (13, 0, .125))
         RELEASE PR 1
         DEPART Q 11
         TRANSFER 0.25,,FIN_ISH
STATE_2
         QUEUE Q_2
         QUEUE Q_TOT
         QUEUE Q_21
         SEIZE PR 2
         DEPART Q 2
         DEPART Q TOT
         ADVANCE (EXPONENTIAL (13, 0, .25))
         RELEASE PR 2
         DEPART Q 21
        QUEUE Q_3
STATE 3
         QUEUE Q TOT
         QUEUE Q 31
         ENTER UZEL 3
         DEPART Q 3
         DEPART Q TOT
         ADVANCE (EXPONENTIAL (13, 0, .5))
         LEAVE UZEL 3
         DEPART Q 31
         TRANSFER , STATE 1
         DEPART Q TOTAL
FIN ISH
         TERMINATE 1
```

### 4. Проведение экспериментов на моделях

# 4.1. Расчет характеристик обслуживания заявок и изучение свойств СеМО на аналитических моделях

1) Расчет точных значений характеристик функционирования экспоненциальной ЗСеМО и РСеМО:

Точные значения характеристик ЗСеМО и РСеМО:

|                          | Замкнут | ая СеМО |       |       | Разомкнутая СеМО |       |       |       |  |  |
|--------------------------|---------|---------|-------|-------|------------------|-------|-------|-------|--|--|
|                          | Уз. 1   | Уз. 2   | Уз. 3 | Сеть  | Уз. 1            | Уз. 2 | Уз. 3 | Сеть  |  |  |
| Загрузка [р]             | 0.760   | 0.570   | 0.570 | -     | 0.760            | 0.570 | 0.570 | -     |  |  |
| Длина очереди заявок [I] | 0.870   | 0.430   | 0.231 | 1.530 | 2.407            | 0.756 | 0.549 | 3.711 |  |  |
| Число заявок [m]         | 1.629   | 1.000   | 1.371 | 4     | 3.167            | 1.326 | 1.689 | 6.181 |  |  |
| Время ожидания [w]       | 0.286   | 0.188   | 0.101 | 2.013 | 0.791            | 0.331 | 0.240 | 4.883 |  |  |
| Время пребывания [u]     | 0.536   | 0.438   | 0.601 | 5.263 | 1.041            | 0.581 | 0.740 | 8.133 |  |  |
| Производительность [λ]   | -       | -       | -     | 0.76  | -                | -     | -     | -     |  |  |

2) Изменяя число заявок в сети, определяем критическое число заявок, начиная с которого производительность ЗСеМО не изменяется с заданной точностью (прирост производительности не превосходит 1-5%).

Критическое число заявок -6, прирост производительности при увеличении числа заявок -3,6% и менее.

- 3) Анализируем сетевые характеристики функционирования СеМО при изменении числа заявок в 3СеМО (см. Таблица (число заявок и интенсивность)).
- 4) Определяем узкое место и устраняем его:

Узкое место – первый узел. Устраним его, уменьшив среднее время обслуживания с 0,25 до 0,19. В таком случае загрузка всех узлов примерно уравновешиваются и соответственно равны 64%, 63% и 63%.

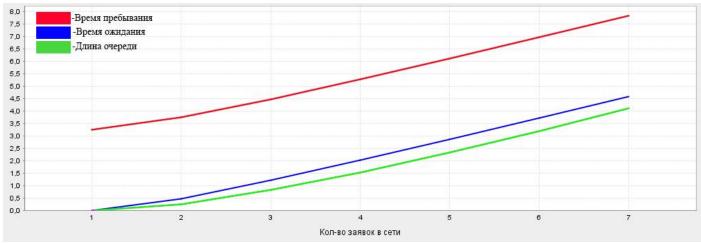
- 5) Определяем изменение сетевых характеристик 3CeMO при устранении «узкого места» (см. Таблица (узкое место)).
- 6) Определяем предельную интенсивность поступления заявок в РСеМО, при которой в сети существует стационарный режим.

$$\lambda_0 < \min(\frac{K_1}{\alpha_1 b_1}, \frac{K_2}{\alpha_2 b_2}, \dots, \frac{K_n}{\alpha_n b_n})$$

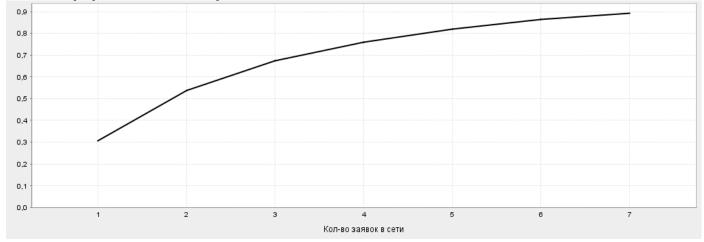
В нашем случае:

 $\lambda_0 < \min(1, 1.3, 1.3) = 1.$ 

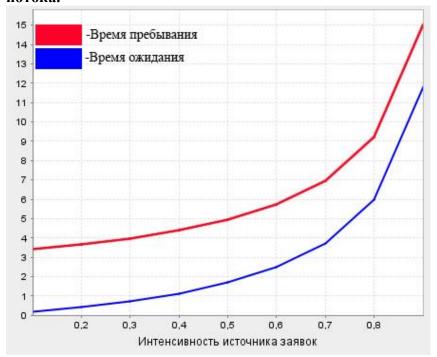
7) Анализируем сетевые характеристики функционирования РСеМО при изменении интенсивности входящего потока заявок от значения, при котором загрузка "узкого места" составляет 0,2 - 0,3, до значения, при котором его загрузка составляет 0,9 - 0,95 (см. Таблица (число заявок и интенсивность)).


#### Число заявок и интенсивность:

|                  |                                   | ич. чис<br>заяво | •     |       |       |       | (Пред. интенсивность = 1)<br>Интен. потока в РСеМО |       |       |       |       |        |
|------------------|-----------------------------------|------------------|-------|-------|-------|-------|----------------------------------------------------|-------|-------|-------|-------|--------|
|                  | 1                                 | 2                | 3     | 4     | 5     | 6     | 0.2                                                | 0.3   | 0.45  | 0.6   | 0.75  | 0.9    |
| Длина очереди    | 0                                 | 0.258            | 0.815 | 1.530 | 2.336 | 3.198 | 0.083                                              | 0.218 | 0.627 | 1.497 | 3.494 | 10.632 |
| Число заявок     | 1                                 | 2                | 3     | 4     | 5     | 6     | 0.733   1.193   2.089   3.447   5.931   13.59      |       |       |       |       |        |
| Время ожидания   | 0                                 | 0.481            | 1.211 | 2.013 | 2.850 | 3.709 | 0.417                                              | 0.726 | 1.393 | 2.495 | 4.659 | 11.813 |
| Время            | 3.25 3.731 4.461 5.263 6.100 6.95 |                  |       |       |       |       | 3.667                                              | 3.976 | 4.643 | 5.745 | 7.909 | 15.063 |
| Производительнос | 0.301                             | 0.536            | 0.672 | 0.760 | 0.820 | 0.862 | -                                                  | -     | -     | -     | -     | -      |


#### Узкое место:

|                   | (Критич. число = 6)<br>Число заявок в ЗСеМО |       |       |       |  |  |  |  |  |  |
|-------------------|---------------------------------------------|-------|-------|-------|--|--|--|--|--|--|
|                   | Old 4 New 4 Old 6 New                       |       |       |       |  |  |  |  |  |  |
| Длина очереди     | 1.530                                       | 1.443 | 3.198 | 3.065 |  |  |  |  |  |  |
| Число заявок      | 4                                           | 4     | 6     | 6     |  |  |  |  |  |  |
| Время ожидания    | 2.013                                       | 1.698 | 3.709 | 3.142 |  |  |  |  |  |  |
| Время пребывания  | 5.263                                       | 4.708 | 6.959 | 6.152 |  |  |  |  |  |  |
| Производительност | 0.760                                       | 0.850 | 0.862 | 0.975 |  |  |  |  |  |  |


# **3**СеМО. График зависимости времени ожидания, пребывания и количества заявок в очередях от количества заявок в сети.



ЗСеМО. График зависимости производительности от количества заявок в сети.



**PCeMO.** График зависимости времени ожидания и пребывания от интенсивности входного потока.



РСеМО. График зависимости количества заявок в очередях и сети от интенсивности входного потока.



# 4.2. Расчет характеристик обслуживания заявок 3CeMO на марковских моделях с использованием программы MARK

Матрица интенсивностей переходов для экспоненциальной 3СеМО:

| матрица интенсивностей переходов для экспоненциальной эссиго. |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |
|---------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
|                                                               | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 0                                                             |   | 3 |   |   |   |   |   |   |   |   |    |    |    |    |    |
| 1                                                             |   |   | 3 |   |   |   |   | 4 |   |   |    |    |    |    |    |
| 2                                                             |   |   |   | 3 |   |   |   |   | 4 |   |    |    |    |    |    |
| 3                                                             |   |   |   |   | 3 |   |   |   |   | 4 |    |    |    |    |    |
| 4                                                             |   |   |   |   |   |   |   |   |   |   | 4  |    |    |    |    |
| 5                                                             | 2 |   |   |   |   |   | 3 |   |   |   |    |    |    |    |    |
| 6                                                             |   | 2 |   |   |   |   |   | 3 |   | 4 |    |    |    |    |    |
| 7                                                             |   |   | 2 |   |   |   |   |   | 3 |   | 4  |    |    |    |    |
| 8                                                             |   |   |   | 2 |   |   |   |   |   |   |    | 4  |    |    |    |
| 9                                                             |   |   |   |   |   | 4 |   |   |   |   | 3  |    |    |    |    |
| 10                                                            |   |   |   |   |   |   | 4 |   |   |   |    | 3  | 4  |    |    |
| 11                                                            |   |   |   |   |   |   |   | 4 |   |   |    |    |    | 4  |    |
| 12                                                            |   |   |   |   |   |   |   |   |   | 4 |    |    |    | 3  |    |
| 13                                                            |   |   |   |   |   |   |   |   | · |   | 4  |    |    |    | 4  |
| 14                                                            |   |   |   |   |   |   |   |   |   |   |    |    | 4  |    |    |

Матрица интенсивностей переходов для неэкспоненциальной 3СеМО:

|    | атрица интенсивностей переходов для неэкспоненциальной эсемо: |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|---------------------------------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | 0                                                             | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 0  |                                                               | 8 |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 1  |                                                               |   | 6 |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2  |                                                               |   |   | 8 |   |   |   |   |   | 4 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3  |                                                               |   |   |   | 6 |   |   |   |   |   | 4  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4  |                                                               |   |   |   |   | 8 |   |   |   |   |    | 4  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 5  |                                                               |   |   |   |   |   | 6 |   |   |   |    |    | 4  |    |    |    |    |    |    |    |    |    |    |    |    |
| 6  |                                                               |   |   |   |   |   |   | 8 |   |   |    |    |    | 4  |    |    |    |    |    |    |    |    |    |    |    |
| 7  |                                                               |   |   |   |   |   |   |   | 6 |   |    |    |    |    | 4  |    |    |    |    |    |    |    |    |    |    |
| 8  |                                                               |   |   |   |   |   |   |   |   |   |    |    |    |    |    | 4  |    |    |    |    |    |    |    |    |    |
| 9  | 2                                                             |   |   |   |   |   |   |   |   |   | 8  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10 |                                                               | 2 |   |   |   |   |   |   |   |   |    | 6  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11 |                                                               |   | 2 |   |   |   |   |   |   |   |    |    | 8  |    |    |    | 4  |    |    |    |    |    |    |    |    |
| 12 |                                                               |   |   | 2 |   |   |   |   |   |   |    |    |    | 6  |    |    |    | 4  |    |    |    |    |    |    |    |
| 13 |                                                               |   |   |   | 2 |   |   |   |   |   |    |    |    |    | 8  |    |    |    | 4  |    |    |    |    |    |    |
| 14 |                                                               |   |   |   |   | 2 |   |   |   |   |    |    |    |    |    | 6  |    |    |    | 4  |    |    |    |    |    |
| 15 |                                                               |   |   |   |   |   | 2 |   |   |   |    |    |    |    |    |    |    |    |    |    | 4  |    |    |    |    |
| 16 |                                                               |   |   |   |   |   |   |   |   | 4 |    |    |    |    |    |    |    | 8  |    |    |    |    |    |    |    |
| 17 |                                                               |   |   |   |   |   |   |   |   |   | 4  |    |    |    |    |    |    |    | 6  |    |    |    |    |    |    |
| 18 |                                                               |   |   |   |   |   |   |   |   |   |    | 4  |    |    |    |    |    |    |    | 8  |    | 4  |    |    |    |
| 19 |                                                               |   |   |   |   |   |   |   |   |   |    |    | 4  |    |    |    |    |    |    |    | 6  |    | 4  |    |    |
| 20 |                                                               |   |   |   |   |   |   |   |   |   |    |    |    | 4  |    |    |    |    |    |    |    |    |    | 4  |    |
| 21 |                                                               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    | 4  |    |    |    |    |    | 8  |    |    |
| 22 |                                                               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 4  |    |    |    |    |    | 6  |    |
| 23 |                                                               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 4  |    |    |    |    |    | 4  |
| 24 |                                                               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 4  |    |    |    |

|                          | Экспоне | нциаль | ная ЗСе | MO    | Неэкспоненциальная ЗСеМО |               |       |       |  |  |
|--------------------------|---------|--------|---------|-------|--------------------------|---------------|-------|-------|--|--|
|                          | Уз. 1   | Уз. 2  | Уз. 3   | Сеть  | Уз. 1                    | <b>Y</b> 3. 2 | Уз. 3 | Сеть  |  |  |
| Загрузка [р]             | 0.760   | 0.570  | 0.570   | -     | 0.733                    | 0.628         | 0.628 | -     |  |  |
| Длина очереди заявок [l] | 0.870   | 0.430  | 0.231   | 1.530 | 0.646                    | 0.457         | 0.579 | 1.382 |  |  |
| Число заявок [m]         | 1.629   | 1.000  | 1.371   | -     | 1.379                    | 1.085         | 1.343 | -     |  |  |
| Время ожидания [w]       | 0.286   | 0.189  | 0.101   | 2.013 | 0.193                    | 0.182         | 0.111 | 1.650 |  |  |
| Время пребывания [u]     | 0.536   | 0.439  | 0.601   | 5.263 | 0.412                    | 0.432         | 0.534 | 4.545 |  |  |
| Производительность [λ]   | -       | -      | -       | 0.76  | -                        | -             | -     | 0.733 |  |  |

В результате сравнения характеристик двух СеМО мы видим, что средняя длина очереди, время ожидания и время пребывания в неэкспоненциальной СеМО меньше, чем в экспоненциальной.

## 4.3 Проведение имитационных экспериментов на GPSS-моделях

При количестве транзактов равном 100000 относительные погрешности величин менее 1%

Длительность моделирования: 8c Количество транзактов: 100000

| Характеристики<br>СеМО | PCeMO-1 |       |       |         | PCeMO-2 |       |       |         |
|------------------------|---------|-------|-------|---------|---------|-------|-------|---------|
|                        | Узловые |       |       | Comenza | Узловые |       |       | Comony  |
|                        | У1      | У2    | У3    | Сетевые | У1      | У2    | У3    | Сетевые |
| Загрузка               | 0,755   | 0,564 | 0,566 | _       | 0,753   | 0,567 | 0,565 | -       |
|                        | 0,7%    | 1,1%  | 0,7%  | -       | 0,9%    | 0,5%  | 0,9%  | -       |
| Длина очереди          | 2,353   | 0,740 | 0,533 | 3,626   | 1,488   | 0,601 | 0,410 | 2,499   |
|                        | 2,2%    | 2,1%  | 2,9%  | 2,3%    | 38,2%   | 20,5% | 2,9%  | 33,4%   |
| Число заявок           | 3,108   | 1,305 | 1,665 | 6,077   | 2,242   | 1,167 | 1,54  | 4,95    |
|                        | 1,9%    | 1,6%  | 1,4%  | 1,7%    | 29,2%   | 12,0% | 8,8%  | 19,9%   |
| Время ожидания         | 0,778   | 0,327 | 0,235 | 4,798   | 0,492   | 0,265 | 0,181 | 3,306   |
|                        | 1,6%    | 1,2%  | 2,1%  | 1,7%    | 37,8%   | 19,9% | 24,6% | 32,3%   |
| Время пребывания       | 1,028   | 0,576 | 0,736 | 7,999   | 0,741   | 0,516 | 0,68  | 6,514   |
|                        | 1,2%    | 0,9%  | 0,5%  | 1,6%    | 28,8%   | 11,2% | 8,1%  | 19,9%   |

| Vanavanana             | PCeMO-3 |         |       |         |  |  |  |  |
|------------------------|---------|---------|-------|---------|--|--|--|--|
| Характеристики<br>СеМО |         | Comenza |       |         |  |  |  |  |
| Cento                  | У1      | У2      | У3    | Сетевые |  |  |  |  |
| Darmyayaa              | 0,755   | 0,564   | 0,565 | -       |  |  |  |  |
| Загрузка               | 0,7%    | 1,1%    | 0,9%  | -       |  |  |  |  |
|                        | 1,962   | 0,604   | 0,479 | 3,046   |  |  |  |  |
| Длина очереди          | 18,5%   | 20,1%   | 12,8% | 17,9%   |  |  |  |  |
| Hwaza zagnavi          | 2,717   | 1,169   | 1,609 | 5,495   |  |  |  |  |
| Число заявок           | 14,2%   | 11,8%   | 4,7%  | 11,1%   |  |  |  |  |
| Dnova                  | 0,649   | 0,267   | 0,212 | 4,033   |  |  |  |  |
| Время<br>ожидания      | 18,0%   | 19,3%   | 11,7% | 17,4%   |  |  |  |  |
| Время                  | 0,899   | 0,516   | 0,711 | 7,233   |  |  |  |  |
| пребывания             | 13,6%   | 11,2%   | 3,9%  | 11,1%   |  |  |  |  |

Минимальное число транзактов (заявок), обеспечивающее приемлемую точность результатов (погрешность в пределах 5%) находится в пределах 100000.

При детерминированном интервале между заявками (PCeMO2), характеристики сети значительно улучшились, т.к. детерминированное значение интервала между заявками снижает вероятность появления очередей, поэтому уменьшаются и времена ожидания и пребывания.

При изменении экспоненциального распределения длительности обслуживания на распределение Эрланга характеристики также улучшаются, а происходит это из-за того, что распределение Эрланга ближе по параметрам к детерминированному распределению.

#### 5. Вывод:

В результате экспериментов получаем, что наиболее точные результаты дает метод аналитического моделирования. Численный метод дает результаты очень близкие к аналитическому, но их погрешность обусловлена заменой сложных математических формул и отношений более простыми, а также погрешностью округления при выполнении расчетов. Имитационное моделирование дает менее точные результаты, чем аналитическое, так как точность результатов зависит от количества транзактов проходящих через моделируемую систему.