Кодирование данных в телекоммуникационных сетях

Учебно-исследовательская работа

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	2
2. ЭТАПЫ РАБОТЫ	2
2.1. Формирование сообщения	2
2.2. Физическое кодирование исходного сообщения	3
2.3. Логическое (избыточное) кодирование исходного сообщения	3
2.4. Скремблирование исходного сообщения	4
2.5. Сравнительный анализ результатов кодирования	4
3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	4
4. СОДЕРЖАНИЕ ОТЧЕТА	4
5. ЛИТЕРАТУРА	5

1. ВВЕДЕНИЕ

Цель работы: изучение методов логического и физического кодирования, используемых в цифровых сетях передачи данных.

В процессе выполнения работы необходимо выполнить логическое и физическое кодирование исходного сообщения в соответствии с заданными методами кодирования, провести сравнительный анализ рассматриваемых методов кодирования, выбрать и обосновать наилучший метод для передачи исходного сообщения.

2. ЭТАПЫ РАБОТЫ

2.1. Формирование сообщения

В качестве исходного сообщения, подлежащего передаче, используются фамилия и инициалы студента, выполняющего домашнее задание. Для цифрового представления сообщения используются шестнадцатеричные коды в соответствии с кодировочной таблицей:

Символ	Код	Символ	Код	Символ	Код	Символ	Код	Символ	Код
A	C0	P	D0	a	E0	p	F0	пробел	20
Б	C1	C	D1	б	E1	c	F1	,	2 C
В	C2	T	D2	В	E2	T	F2		2 E
Γ	C3	У	D3	Γ	E3	y	F3	0	30
Д	C4	Φ	D4	Д	E4	ф	F4	1	31
Е	C5	X	D5	e	E5	X	F5	2	32
Ж	C6	Ц	D6	Ж	E6	Ц	F6	3	33
3	C7	Ч	D 7	3	E7	Ч	F7	4	34
И	C8	Ш	D8	И	E8	Ш	F8	5	35
Й	C9	Щ	D9	й	E9	Щ	F9	6	36
К	CA	Ъ	DA	К	EA	ъ	FA	7	37
Л	CB	Ы	DB	Л	EB	Ы	FB	8	38
M	CC	Ь	DC	M	EC	Ь	FC	9	39
Н	CD	Э	DD	Н	ED	Э	FD		
O	CE	Ю	DE	0	EE	Ю	FE		
П	CF	R	DF	П	EF	Я	FF		

Записать исходное сообщение в шестнадцатеричном и двоичном кодах. Определить длину сообщения.

Пример:

исходное сообщение: Ф.И.О.

в шестнадцатеричном коде: D4 2E C8 2E CE 2E

в двоичном коде: 11010100 00101110 11001000 00101110 11001110 00101110

длина сообщения: 6 байт (48 бит)

2.2. Физическое кодирование исходного сообщения

Выполнить физическое кодирование исходного сообщения с использованием манчестерского кодирования и еще <u>трёх</u> (оценка «3») , <u>четырёх</u> (оценка «4») или <u>пяти</u> (оценка «5») способов кодирования для передачи данного сообщения, при этом может быть предложен новый способ кодирования, отличающийся от известных.

Результаты кодирования для первых четырех байтов изобразить в виде временных диаграмм.

Для каждого способа кодирования определить (полагая, что пропускная способность канала связи равна 10/100/1000 Мбит/с — рассмотреть все предложенные варианты):

- частоту основной гармоники для сигналов вида «1111111...» и «0000000...»;
- нижнюю и верхнюю границы частот спектра сигнала в передаваемом сообщении;
- полосу пропускания, необходимую для передачи данного сообщения;
- среднее значение частоты передаваемого сообщения (т. е. среднее арифметическое частот основных гармоник на каждом битовом интервале при передаче первых четырёх байтов).

Провести сравнительный анализ рассмотренных способов кодирования (определить достоинства и недостатки).

Выбрать два наилучших способа кодирования для передачи исходного сообщения и обосновать этот выбор.

2.3. Логическое (избыточное) кодирование исходного сообщения

Выполнить логическое кодирование исходного сообщения по методу 4В/5В. Записать полученное сообщение в двоичном и шестнадцатеричном кодах.

Определить длину нового сообщения и его избыточность.

Пример:

в двоичном коде: 1101101010 1010011100 110101010 1010011100 1101011100

1010011100

в шестнадцатеричном коде: DAA9CD4A9CD729C

длина сообщения: 7,5 байт (60 бит)

избыточность: 1,5/6=12/48=0,25 (25%)

Для полученного нового сообщения выполнить физическое кодирование с использованием любого одного из рассмотренных в п.2.2 способов кодирования, в котором отсутствует самосинхронизация.

Результаты кодирования для первых четырех байт изобразить в виде временных диаграмм.

Полагая, что пропускная способность канала связи равна 10/100/1000 Мбит/с, определить:

- частоту основной гармоники для сигналов вида «1111111...» и «0000000...»;
- нижнюю и верхнюю границы частот в передаваемом сообщении;
- полосу пропускания, необходимую для передачи данного сообщения;
- среднее значение частоты передаваемого сообщения (т. е. среднее арифметическое частот основных гармоник на каждом битовом интервале при передаче первых четырёх байтов).

Проанализировать, как изменились характеристики сигнала после применения избыточного кодирования в рассмотренном способе кодирования.

2.4. Скремблирование исходного сообщения

Выбрать из ниже представленных или предложить свой полином для скремблирования исходного сообщения и обосновать этот выбор.

$$Bi = Ai \text{ xor } Bi-3 \text{ xor } Bi-5;$$

 $Bi = Ai \text{ xor } Bi-5 \text{ xor } Bi-7,$

Выполнить скремблирование первых четырех байтов исходного сообщения.

Все вычисления привести в отчёте.

Записать полученные скремблированные сообщения в двоичном и шестнадцатеричном кодах.

Для полученного нового скремблированного сообщения выполнить физическое кодирование с использованием способа кодирования, выбранного в п.2.3.

Результаты кодирования для первых четырех байт изобразить в виде временных диаграмм.

Полагая, что пропускная способность канала связи равна 10/100/1000 Мбит/с, определить:

- частоту основной гармоники для сигналов вида «1111111...» и «0000000...»;
- нижнюю и верхнюю границы частот в передаваемом сообщении;
- полосу пропускания, необходимую для передачи данного сообщения;
- среднее значение частоты передаваемого сообщения (т. е. среднее арифметическое частот основных гармоник на каждом битовом интервале при передаче первых четырёх байтов). Проанализировать, как изменились характеристики сигнала после применения скремблирования в рассмотренном способе кодирования, и сравнить с методом «4В/5В».

2.5. Сравнительный анализ результатов кодирования

Выполнить сравнительный анализ результатов, полученных в п.п. 2.2, 2.3 и 2.4. Результаты сравнения представить в виде сводной таблицы.

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 3.1. Ознакомиться с постановкой задачи.
- 3.2. Сформировать исходное сообщение (п.2.1).
- 3.3. Выполнить физическое кодирование исходного сообщения не менее, чем тремя способами, включая, в качестве обязательного, манчестерское кодирование (п.2.2).
- 3.4. Выполнить логическое кодирование исходного сообщения, используя избыточное кодирование 4B/5B и скремблирование (п.п.2.3 2.4).
- 3.5. Выполнить сравнительный анализ рассмотренных способов кодирования и выбрать наилучший способ для передачи исходного сообщения (п.2.5).
 - 3.6. Оформить отчет и сдать его на проверку.
 - 3.7. В назначенное преподавателем время защитить задание.

4. СОДЕРЖАНИЕ ОТЧЕТА

- 4.1. Постановка задачи.
- 4.2. Исходное сообщение и его представление в 16-тиричном и двоичном виде, длина исходного сообщения (в байтах и битах).
- 4.3. Временные диаграммы для **четырех** способов физического кодирования (включая манчестерское кодирование) первых четырех байт исходного сообщения.

Рассчитанные для каждого способа кодирования значения:

• частоты основной гармоники для сигналов вида «1111111...» и «0000000...»;

- нижней и верхней границ частот в передаваемом сообщении;
- полосы пропускания, необходимой для передачи данного сообщения;
- среднего значения частоты передаваемого сообщения.

Результаты сравнительного анализа рассмотренных способов кодирования (достоинства и недостатки), представленные в виде таблицы и обоснованный выбор лучшего способа кодирования для передачи исходного сообщения.

4.4. Результат логического кодирования исходного сообщения по методу 4В/5В, записанный в виде избыточного сообщения в двоичном и шестнадцатеричном кодах.

Значение длины нового сообщения и его избыточность.

- 4.5. Временная диаграмма для физического кодирования избыточного сообщения 4В/5В. Рассчитанные для каждого способа кодирования значения:
- частоты основной гармоники для сигналов вида «1111111...» и «0000000...»;
- нижней и верхней границ частот в передаваемом сообщении;
- полосы пропускания, необходимой для передачи данного сообщения;
- среднего значения частоты передаваемого сообщения (т. е. среднее арифметическое частот основных гармоник на каждом битовом интервале при передаче первых четырёх байтов).

Результаты сравнительного анализа рассмотренных способов кодирования (достоинства и недостатки), представленные в виде таблицы и обоснованный выбор наилучшего способа кодирования для передачи исходного сообщения.

4.6. Вид полинома, используемого для скремблирования исходного сообщения, и обоснование его выбора.

Последовательность получения разрядов скремблированного сообщения .

Результат скремблирования, записанный в виде скремблированного сообщения в двоичном и шестнадцатеричном кодах.

4.7. Временная диаграмма для физического кодирования скремблированного сообщения.

Рассчитанные для каждого способа кодирования значения:

- частоты основной гармоники;
- нижней и верхней границ частот в передаваемом сообщении;
- полосы пропускания, необходимой для передачи данного сообщения;
- среднего значения частоты передаваемого сообщения.

Результаты сравнительного анализа рассмотренных способов кодирования (достоинства и недостатки), представленные в виде таблицы и обоснованный выбор наилучшего способа кодирования для передачи исходного сообщения.

4.8. Выводы с обоснованием наилучшего способа логического и физического кодирования для передачи исходного сообщения.

5. ЛИТЕРАТУРА

- 1. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. СПб: ПИТЕР, 2006. 958 с.:ил.
- 2. Методы модуляции и кодирования данных. Учебное пособие (электронный вариант)/ Портал кафедры ВТ: http://cis.ifmo.ru/ Раздел: «Учебный процесс/Документация» СПбГУ ИТМО, 2006.
- 3. Раздел 2 «Средства телекоммуникаций». Учебное пособие (электронный вариант)/ Портал кафедры ВТ: http://cis.ifmo.ru/ Раздел: «Учебный процесс/Документация» СПбГУ ИТМО, 2006.
- 4. Конспект лекций по дисциплине «Сети ЭВМ и средства телекоммуникаций». СПбГУ ИТМО, 2004.